TACTIC: Translation Agents with Cognitive-Theoretic Interactive Collaboration
- URL: http://arxiv.org/abs/2506.08403v2
- Date: Wed, 11 Jun 2025 15:57:34 GMT
- Title: TACTIC: Translation Agents with Cognitive-Theoretic Interactive Collaboration
- Authors: Weiya Li, Junjie Chen, Bei Li, Boyang Liu, Zichen Wen, Nuanqiao Shan, Xiaoqian Liu, Anping Liu, Huajie Liu, Hu Song, Linfeng Zhang,
- Abstract summary: We propose a cognitively informed multi-agent framework called TACTIC.<n>It comprises six functionally distinct agents that mirror key cognitive processes observed in human translation behavior.<n>Our method consistently achieves state-of-the-art performance.
- Score: 19.58067098896903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine translation has long been a central task in natural language processing. With the rapid advancement of large language models (LLMs), there has been remarkable progress in translation quality. However, fully realizing the translation potential of LLMs remains an open challenge. Recent studies have explored multi-agent systems to decompose complex translation tasks into collaborative subtasks, showing initial promise in enhancing translation quality through agent cooperation and specialization. Nevertheless, existing multi-agent translation frameworks largely neglect foundational insights from cognitive translation studies. These insights emphasize how human translators employ different cognitive strategies, such as balancing literal and free translation, refining expressions based on context, and iteratively evaluating outputs. To address this limitation, we propose a cognitively informed multi-agent framework called TACTIC, which stands for T ranslation A gents with Cognitive- T heoretic Interactive Collaboration. The framework comprises six functionally distinct agents that mirror key cognitive processes observed in human translation behavior. These include agents for drafting, refinement, evaluation, scoring, context reasoning, and external knowledge gathering. By simulating an interactive and theory-grounded translation workflow, TACTIC effectively leverages the full capacity of LLMs for high-quality translation. Experimental results on diverse language pairs from the FLORES-200 and WMT24 benchmarks show that our method consistently achieves state-of-the-art performance. Using DeepSeek-V3 as the base model, TACTIC surpasses GPT-4.1 by an average of +0.6 XCOMET and +1.18 COMETKIWI-23. Compared to DeepSeek-R1, it further improves by +0.84 XCOMET and +2.99 COMETKIWI-23. Code is available at https://github.com/weiyali126/TACTIC.
Related papers
- Seed-X: Building Strong Multilingual Translation LLM with 7B Parameters [53.59868121093848]
We introduce Seed-X, a family of open-source language models (LLMs) with 7B parameter size.<n>The base model is pre-trained on a diverse, high-quality dataset encompassing both monolingual and bilingual content across 28 languages.<n>The instruct model is then finetuned to translate by Chain-of-Thought (CoT) reasoning and further enhanced through reinforcement learning (RL) to achieve better generalization across diverse language pairs.
arXiv Detail & Related papers (2025-07-18T03:19:43Z) - Function-to-Style Guidance of LLMs for Code Translation [59.487054943812836]
We propose F2STrans, a function-to-style guiding paradigm designed to improve the performance of large language models in code translation.<n>Our approach comprises two key stages: (1) Functional learning, which optimize translation correctness using high-quality source-target code pairs.<n>We introduce a novel code translation benchmark that includes up-to-date source code, extensive test cases, and manually annotated ground-truth translations.
arXiv Detail & Related papers (2025-07-15T08:25:02Z) - Collaboration is all you need: LLM Assisted Safe Code Translation [4.3764649156831235]
UniTranslator is a framework that re-imagines code translation as a collaborative endeavor among multiple, compact LLMs.<n>By orchestrating the interaction of specialized agents, UniTranslator achieves a level of accuracy and efficiency that rivals larger, monolithic models.
arXiv Detail & Related papers (2025-03-14T09:42:07Z) - LLM-based Translation Inference with Iterative Bilingual Understanding [52.46978502902928]
We propose a novel Iterative Bilingual Understanding Translation method based on the cross-lingual capabilities of large language models (LLMs)<n>The cross-lingual capability of LLMs enables the generation of contextual understanding for both the source and target languages separately.<n>The proposed IBUT outperforms several strong comparison methods.
arXiv Detail & Related papers (2024-10-16T13:21:46Z) - AVIATE: Exploiting Translation Variants of Artifacts to Improve IR-based Traceability Recovery in Bilingual Software Projects [14.643142867163748]
Traceability plays a vital role in facilitating various software development activities.
The IR (Information Retrieval)-based approaches leverage textual similarity to measure the likelihood of traces between artifacts.
The globalization of software development has introduced new challenges, such as the possible multilingualism on the same concept.
arXiv Detail & Related papers (2024-09-28T10:21:37Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks.
We propose the TasTe framework, which stands for translating through self-reflection.
The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods.
arXiv Detail & Related papers (2024-06-12T17:21:21Z) - (Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts [56.7988577327046]
We introduce TransAgents, a novel multi-agent framework that simulates the roles and collaborative practices of a human translation company.<n>Our findings highlight the potential of multi-agent collaboration in enhancing translation quality, particularly for longer texts.
arXiv Detail & Related papers (2024-05-20T05:55:08Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
Large language models (LLMs) have demonstrated impressive capabilities in general scenarios.
This work proposes the MAPS framework, which stands for Multi-Aspect Prompting and Selection.
We employ a selection mechanism based on quality estimation to filter out noisy and unhelpful knowledge.
arXiv Detail & Related papers (2023-05-06T19:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.