RadioDUN: A Physics-Inspired Deep Unfolding Network for Radio Map Estimation
- URL: http://arxiv.org/abs/2506.08418v2
- Date: Thu, 24 Jul 2025 09:41:43 GMT
- Title: RadioDUN: A Physics-Inspired Deep Unfolding Network for Radio Map Estimation
- Authors: Taiqin Chen, Zikun Zhou, Zheng Fang, Wenzhen Zou, Kangjun Liu, Ke Chen, Yongbing Zhang, Yaowei Wang,
- Abstract summary: It is difficult to construct a dense radio map as a limited number of samples can be measured in practical scenarios.<n>Existing works have used deep learning to estimate dense radio maps from sparse samples, but they are hard to integrate with the physical characteristics of the radio map.<n>We propose Radio Deep Unfolding Network (RadioDUN) to unfold the optimization process, achieving adaptive parameter adjusting and prior fitting in a learnable manner.
- Score: 37.88819474629482
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The radio map represents the spatial distribution of spectrum resources within a region, supporting efficient resource allocation and interference mitigation. However, it is difficult to construct a dense radio map as a limited number of samples can be measured in practical scenarios. While existing works have used deep learning to estimate dense radio maps from sparse samples, they are hard to integrate with the physical characteristics of the radio map. To address this challenge, we cast radio map estimation as the sparse signal recovery problem. A physical propagation model is further incorporated to decompose the problem into multiple factor optimization sub-problems, thereby reducing recovery complexity. Inspired by the existing compressive sensing methods, we propose the Radio Deep Unfolding Network (RadioDUN) to unfold the optimization process, achieving adaptive parameter adjusting and prior fitting in a learnable manner. To account for the radio propagation characteristics, we develop a dynamic reweighting module (DRM) to adaptively model the importance of each factor for the radio map. Inspired by the shadowing factor in the physical propagation model, we integrate obstacle-related factors to express the obstacle-induced signal stochastic decay. The shadowing loss is further designed to constrain the factor prediction and act as a supplementary supervised objective, which enhances the performance of RadioDUN. Extensive experiments have been conducted to demonstrate that the proposed method outperforms the state-of-the-art methods. Our code will be made publicly available upon publication.
Related papers
- RadioFormer: A Multiple-Granularity Radio Map Estimation Transformer with 1\textpertenthousand Spatial Sampling [60.267226205350596]
Radio map estimation aims to generate a dense representation of electromagnetic spectrum quantities.<n>We propose RadioFormer, a novel multiple-granularity transformer to handle the constraints posed by spatial sparse observations.<n>We show that RadioFormer outperforms state-of-the-art methods in radio map estimation while maintaining the lowest computational cost.
arXiv Detail & Related papers (2025-04-27T08:44:41Z) - RadioDiff-$k^2$: Helmholtz Equation Informed Generative Diffusion Model for Multi-Path Aware Radio Map Construction [69.96295462931168]
We propose a physics-informed generative learning approach, termed RadioDiff-$bmk2$, for accurate and efficient multipath-aware radio map (RM) construction.<n>We establish a direct correspondence between EM singularities, which correspond to the critical spatial features influencing wireless propagation, and regions defined by negative wave numbers in the Helmholtz equation.
arXiv Detail & Related papers (2025-04-22T06:28:13Z) - RadioDiff-Inverse: Diffusion Enhanced Bayesian Inverse Estimation for ISAC Radio Map Construction [24.3983954491267]
Radio maps (RMs) are essential for environment-aware communication and sensing, providing location-specific wireless channel information.<n>Existing RM construction methods often rely on precise environmental data and base station (BS) locations, which are not always available in dynamic or privacy-sensitive environments.<n>This paper formulates RM construction as a Bayesian inverse problem under coarse environmental knowledge and noisy sparse measurements.<n>We propose RadioDiff-Inverse, a diffusion-enhanced Bayesian inverse estimation framework that uses an unconditional generative diffusion model to learn the RM prior.
arXiv Detail & Related papers (2025-04-19T13:49:59Z) - Radio Map Estimation via Latent Domain Plug-and-Play Denoising [24.114418244026957]
Radio map estimation (RME) aims to reconstruct the strength of radio interference across different domains (e.g., space and frequency)<n>The proposed method exploits the underlying physical structure of radio maps and proposes an ADMMnoises in a latent domain.<n>This design significantly improves computational efficiency and enhances noise robustness.
arXiv Detail & Related papers (2025-01-23T08:42:24Z) - RadioDiff: An Effective Generative Diffusion Model for Sampling-Free Dynamic Radio Map Construction [42.596399621642234]
Radio map (RM) is a promising technology that can obtain pathloss based on only location.
In this paper, a sampling-free RM construction is modeled as a conditional generative problem, where a denoised diffusion-based method, named RadioDiff, is proposed to achieve high-quality RM construction.
Experimental results show that the proposed RadioDiff achieves state-of-the-art performance in all three metrics of accuracy, structural similarity, and peak signal-to-noise ratio.
arXiv Detail & Related papers (2024-08-16T08:02:00Z) - Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN [63.90647197249949]
In the 6G era, real-time radio resource monitoring and management are urged to support diverse wireless-empowered applications.
In this paper, we present a cooperative radio map estimation approach enabled by the generative adversarial network (GAN)
arXiv Detail & Related papers (2024-02-05T05:01:28Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Deep Spectrum Cartography: Completing Radio Map Tensors Using Learned
Neural Models [44.609368050610044]
Deep neural networks (DNNs) are able to "learn" intricate underlying structures from data.
In this work, an emitter radio map disaggregation-based approach is proposed.
arXiv Detail & Related papers (2021-05-01T07:04:09Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences.
FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions.
One strategy to mitigate this problem, called Targeted Free Energy Perturbation, uses a high-dimensional mapping in configuration space to increase overlap.
arXiv Detail & Related papers (2020-02-12T11:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.