Radio Map Estimation via Latent Domain Plug-and-Play Denoising
- URL: http://arxiv.org/abs/2501.13472v1
- Date: Thu, 23 Jan 2025 08:42:24 GMT
- Title: Radio Map Estimation via Latent Domain Plug-and-Play Denoising
- Authors: Le Xu, Lei Cheng, Junting Chen, Wenqiang Pu, Xiao Fu,
- Abstract summary: Radio map estimation (RME) aims to reconstruct the strength of radio interference across different domains (e.g., space and frequency)
The proposed method exploits the underlying physical structure of radio maps and proposes an ADMMnoises in a latent domain.
This design significantly improves computational efficiency and enhances noise robustness.
- Score: 24.114418244026957
- License:
- Abstract: Radio map estimation (RME), also known as spectrum cartography, aims to reconstruct the strength of radio interference across different domains (e.g., space and frequency) from sparsely sampled measurements. To tackle this typical inverse problem, state-of-the-art RME methods rely on handcrafted or data-driven structural information of radio maps. However, the former often struggles to model complex radio frequency (RF) environments and the latter requires excessive training -- making it hard to quickly adapt to in situ sensing tasks. This work presents a spatio-spectral RME approach based on plug-and-play (PnP) denoising, a technique from computational imaging. The idea is to leverage the observation that the denoising operations of signals like natural images and radio maps are similar -- despite the nontrivial differences of the signals themselves. Hence, sophisticated denoisers designed for or learned from natural images can be directly employed to assist RME, avoiding using radio map data for training. Unlike conventional PnP methods that operate directly in the data domain, the proposed method exploits the underlying physical structure of radio maps and proposes an ADMM algorithm that denoises in a latent domain. This design significantly improves computational efficiency and enhances noise robustness. Theoretical aspects, e.g., recoverability of the complete radio map and convergence of the ADMM algorithm are analyzed. Synthetic and real data experiments are conducted to demonstrate the effectiveness of our approach.
Related papers
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - RadioDiff: An Effective Generative Diffusion Model for Sampling-Free Dynamic Radio Map Construction [42.596399621642234]
Radio map (RM) is a promising technology that can obtain pathloss based on only location.
In this paper, a sampling-free RM construction is modeled as a conditional generative problem, where a denoised diffusion-based method, named RadioDiff, is proposed to achieve high-quality RM construction.
Experimental results show that the proposed RadioDiff achieves state-of-the-art performance in all three metrics of accuracy, structural similarity, and peak signal-to-noise ratio.
arXiv Detail & Related papers (2024-08-16T08:02:00Z) - RadioGAT: A Joint Model-based and Data-driven Framework for Multi-band Radiomap Reconstruction via Graph Attention Networks [36.8227064106456]
Multi-band radiomap reconstruction (MB-RMR) is a key component in wireless communications for tasks such as spectrum management and network planning.
Traditional machine-learning-based MB-RMR methods, which rely heavily on simulated data, face significant deployment challenges.
This study presents RadioGAT, a novel framework based on Graph Attention Network (GAT) tailored for MB-RMR within a single area.
arXiv Detail & Related papers (2024-03-25T03:23:10Z) - Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN [63.90647197249949]
In the 6G era, real-time radio resource monitoring and management are urged to support diverse wireless-empowered applications.
In this paper, we present a cooperative radio map estimation approach enabled by the generative adversarial network (GAN)
arXiv Detail & Related papers (2024-02-05T05:01:28Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
We release a dataset of simulated path loss radio maps together with realistic city maps from real-world locations and aerial images from open datasources.
Initial experiments regarding model architectures, input feature design and estimation of radio maps from aerial images are presented.
arXiv Detail & Related papers (2024-01-12T14:56:45Z) - Quantized Radio Map Estimation Using Tensor and Deep Generative Models [11.872336932802844]
Spectrum cartography (SC) aims at crafting multi-domain (e.g., frequency and space) radio power propagation maps from limited sensor measurements.
Existing provable SC approaches assume that sensors send real-valued (full-resolution) measurements to the fusion center, which is unrealistic.
This work puts forth a quantized SC framework that generalizes the BTD and DGM-based SC to scenarios where heavily quantized sensor measurements are used.
arXiv Detail & Related papers (2023-03-03T08:22:51Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Radio-Assisted Human Detection [61.738482870059805]
We propose a radio-assisted human detection framework by incorporating radio information into the state-of-the-art detection methods.
We extract the radio localization and identifer information from the radio signals to assist the human detection.
Experiments on the simulative Microsoft COCO dataset and Caltech pedestrian datasets show that the mean average precision (mAP) and the miss rate can be improved with the aid of radio information.
arXiv Detail & Related papers (2021-12-16T09:53:41Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Deep Spectrum Cartography: Completing Radio Map Tensors Using Learned
Neural Models [44.609368050610044]
Deep neural networks (DNNs) are able to "learn" intricate underlying structures from data.
In this work, an emitter radio map disaggregation-based approach is proposed.
arXiv Detail & Related papers (2021-05-01T07:04:09Z) - Real-Time Radio Technology and Modulation Classification via an LSTM
Auto-Encoder [29.590446724625693]
We present a learning framework based on an LSTM denoising auto-encoder designed to automatically extract stable and robust features from noisy radio signals.
Results on realistic synthetic as well as over-the-air radio data demonstrate that the proposed framework reliably and efficiently classifies received radio signals.
arXiv Detail & Related papers (2020-11-16T21:41:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.