A Survey on Large Language Models for Mathematical Reasoning
- URL: http://arxiv.org/abs/2506.08446v1
- Date: Tue, 10 Jun 2025 04:44:28 GMT
- Title: A Survey on Large Language Models for Mathematical Reasoning
- Authors: Peng-Yuan Wang, Tian-Shuo Liu, Chenyang Wang, Yi-Di Wang, Shu Yan, Cheng-Xing Jia, Xu-Hui Liu, Xin-Wei Chen, Jia-Cheng Xu, Ziniu Li, Yang Yu,
- Abstract summary: This survey examines the development of mathematical reasoning abilities in large language models (LLMs)<n>We review methods for enhancing mathematical reasoning, ranging from training-free prompting to fine-tuning approaches such as supervised fine-tuning and reinforcement learning.<n>Despite notable progress, fundamental challenges remain in terms of capacity, efficiency, and generalization.
- Score: 13.627895103752783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mathematical reasoning has long represented one of the most fundamental and challenging frontiers in artificial intelligence research. In recent years, large language models (LLMs) have achieved significant advances in this area. This survey examines the development of mathematical reasoning abilities in LLMs through two high-level cognitive phases: comprehension, where models gain mathematical understanding via diverse pretraining strategies, and answer generation, which has progressed from direct prediction to step-by-step Chain-of-Thought (CoT) reasoning. We review methods for enhancing mathematical reasoning, ranging from training-free prompting to fine-tuning approaches such as supervised fine-tuning and reinforcement learning, and discuss recent work on extended CoT and "test-time scaling". Despite notable progress, fundamental challenges remain in terms of capacity, efficiency, and generalization. To address these issues, we highlight promising research directions, including advanced pretraining and knowledge augmentation techniques, formal reasoning frameworks, and meta-generalization through principled learning paradigms. This survey tries to provide some insights for researchers interested in enhancing reasoning capabilities of LLMs and for those seeking to apply these techniques to other domains.
Related papers
- Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks.<n>Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains.<n>This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs.
arXiv Detail & Related papers (2025-04-04T04:04:56Z) - A Survey of Scaling in Large Language Model Reasoning [62.92861523305361]
We provide a comprehensive examination of scaling in large Language models (LLMs) reasoning.<n>We analyze scaling in reasoning steps that improves multi-step inference and logical consistency.<n>We discuss scaling in training-enabled reasoning, focusing on optimization through iterative model improvement.
arXiv Detail & Related papers (2025-04-02T23:51:27Z) - A Survey of Efficient Reasoning for Large Reasoning Models: Language, Multimodality, and Beyond [88.5807076505261]
Large Reasoning Models (LRMs) have demonstrated strong performance gains by scaling up the length of Chain-of-Thought (CoT) reasoning during inference.<n>A growing concern lies in their tendency to produce excessively long reasoning traces.<n>This inefficiency introduces significant challenges for training, inference, and real-world deployment.
arXiv Detail & Related papers (2025-03-27T15:36:30Z) - Large Language Models Post-training: Surveying Techniques from Alignment to Reasoning [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures ethical coherence and alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Integration and Adaptation, which
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Advancing Reasoning in Large Language Models: Promising Methods and Approaches [0.0]
Large Language Models (LLMs) have succeeded remarkably in various natural language processing (NLP) tasks.<n>Their ability to perform complex reasoning-spanning logical deduction, mathematical problem-solving, commonsense inference, and multi-step reasoning-often falls short of human expectations.<n>This survey provides a comprehensive review of emerging techniques enhancing reasoning in LLMs.
arXiv Detail & Related papers (2025-02-05T23:31:39Z) - Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models [33.13238566815798]
Large Language Models (LLMs) have sparked significant research interest in leveraging them to tackle complex reasoning tasks.<n>Recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can significantly boost reasoning accuracy.<n>The introduction of OpenAI's o1 series marks a significant milestone in this research direction.
arXiv Detail & Related papers (2025-01-16T17:37:58Z) - LLM Reasoning Engine: Specialized Training for Enhanced Mathematical Reasoning [7.512199306943756]
We present a novel method to enhance Large Language Models' capabilities in mathematical reasoning tasks.<n>Motivated by the need to bridge this gap, our approach incorporates a question paraphrase strategy.<n> specialized training objectives are employed to guide the model's learning process.
arXiv Detail & Related papers (2024-12-28T17:48:33Z) - A Survey of Mathematical Reasoning in the Era of Multimodal Large Language Model: Benchmark, Method & Challenges [25.82535441866882]
This survey provides the first comprehensive analysis of mathematical reasoning in the era of multimodal large language models (MLLMs)<n>We review over 200 studies published since 2021, and examine the state-of-the-art developments in Math-LLMs.<n>In particular, we explore multimodal mathematical reasoning pipeline, as well as the role of (M)LLMs and the associated methodologies.
arXiv Detail & Related papers (2024-12-16T16:21:41Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - A Survey of Reasoning with Foundation Models [235.7288855108172]
Reasoning plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation.
We introduce seminal foundation models proposed or adaptable for reasoning.
We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models.
arXiv Detail & Related papers (2023-12-17T15:16:13Z) - Towards Reasoning in Large Language Models: A Survey [11.35055307348939]
It is not yet clear to what extent large language models (LLMs) are capable of reasoning.
This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs.
arXiv Detail & Related papers (2022-12-20T16:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.