論文の概要: DRAGged into Conflicts: Detecting and Addressing Conflicting Sources in Search-Augmented LLMs
- arxiv url: http://arxiv.org/abs/2506.08500v1
- Date: Tue, 10 Jun 2025 06:52:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:41.674531
- Title: DRAGged into Conflicts: Detecting and Addressing Conflicting Sources in Search-Augmented LLMs
- Title(参考訳): DRAGGed into Conflicts: Finding and Addressing Conflicting Sources in Search-Augmented LLMs (特集:情報ネットワーク)
- Authors: Arie Cattan, Alon Jacovi, Ori Ram, Jonathan Herzig, Roee Aharoni, Sasha Goldshtein, Eran Ofek, Idan Szpektor, Avi Caciularu,
- Abstract要約: Retrieval Augmented Generation (RAG) は、大規模言語モデルを拡張するための一般的なアプローチである。
本稿では,RAGにおける知識衝突型の新しい分類法を提案する。
次に、現実的なRAG設定で競合タイプの専門家アノテーションを備えた高品質なベンチマークであるCONFLICTSを紹介する。
- 参考スコア(独自算出の注目度): 36.47787866482107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval Augmented Generation (RAG) is a commonly used approach for enhancing large language models (LLMs) with relevant and up-to-date information. However, the retrieved sources can often contain conflicting information and it remains unclear how models should address such discrepancies. In this work, we first propose a novel taxonomy of knowledge conflict types in RAG, along with the desired model behavior for each type. We then introduce CONFLICTS, a high-quality benchmark with expert annotations of conflict types in a realistic RAG setting. CONFLICTS is the first benchmark that enables tracking progress on how models address a wide range of knowledge conflicts. We conduct extensive experiments on this benchmark, showing that LLMs often struggle to appropriately resolve conflicts between sources. While prompting LLMs to explicitly reason about the potential conflict in the retrieved documents significantly improves the quality and appropriateness of their responses, substantial room for improvement in future research remains.
- Abstract(参考訳): Retrieval Augmented Generation (RAG)は、大規模言語モデル(LLM)を関連情報と最新情報で拡張するための一般的なアプローチである。
しかし、取得したソースには矛盾する情報がしばしば含まれており、モデルがそのような不一致にどう対処すべきかは定かではない。
本稿ではまず,RAGにおける知識衝突型の新しい分類法を提案する。
次に、現実的なRAG設定で競合タイプの専門家アノテーションを備えた高品質なベンチマークであるCONFLICTSを紹介する。
CONFLICTSは、モデルが幅広い知識衝突にどのように対処するかの進捗を追跡することができる最初のベンチマークである。
我々はこのベンチマークで広範な実験を行い、LLMはソース間の衝突を適切に解決するのにしばしば苦労することを示した。
検索した文書の潜在的な矛盾について、LCMに明確な推論を促すことで、その応答の質と適切性を大幅に向上させる一方で、今後の研究における実質的な改善の余地は残されている。
関連論文リスト
- FaithfulRAG: Fact-Level Conflict Modeling for Context-Faithful Retrieval-Augmented Generation [37.28571879699906]
検索システムで強化された大規模言語モデル(LLM)は、知識集約的なタスクを扱う上で大きな可能性を示している。
本稿では,モデルパラメトリック知識と検索コンテキストの相違を明示的にモデル化することにより,知識の対立を解決する新しいフレームワークであるFaithfulRAGを提案する。
論文 参考訳(メタデータ) (2025-06-10T16:02:54Z) - Preference Learning for AI Alignment: a Causal Perspective [55.2480439325792]
私たちはこの問題を因果パラダイムに枠組み化し、永続的な課題を特定するための因果関係の豊富なツールボックスを提供します。
因果推論の文献を継承し、信頼性の高い一般化に必要な重要な仮定を特定する。
そこで本研究では, 因果関係に基づくアプローチがモデルロバスト性をいかに改善するかを, ナイーブ報酬モデルの障害モードを例示する。
論文 参考訳(メタデータ) (2025-06-06T10:45:42Z) - Resolving Conflicting Evidence in Automated Fact-Checking: A Study on Retrieval-Augmented LLMs [12.923119372847834]
本稿では,ファクトチェックのためのRAGモデルを初めて体系的に評価する。
実験では、最先端のRAG手法、特にメディアソースの信頼性の違いに起因する紛争の解決において、重大な脆弱性が明らかにされている。
以上の結果から,情報源の信頼性を効果的に取り入れることで,矛盾する証拠を解決し,事実確認性能を向上させるRAGモデルの能力が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2025-05-23T11:35:03Z) - Retrieval-Augmented Generation with Conflicting Evidence [57.66282463340297]
大規模言語モデル (LLM) エージェントは、応答の事実性を改善するために、検索強化世代 (RAG) をますます採用している。
実際には、これらのシステムは曖昧なユーザクエリを処理し、複数のソースからの情報に衝突する可能性がある。
RAMDocs(Retrieval with Ambiguity and Misinformation in Documents)は,ユーザクエリのエビデンスを矛盾させるような,複雑で現実的なシナリオをシミュレートする新しいデータセットである。
論文 参考訳(メタデータ) (2025-04-17T16:46:11Z) - SegSub: Evaluating Robustness to Knowledge Conflicts and Hallucinations in Vision-Language Models [6.52323086990482]
視覚言語モデル(VLM)は、高度なマルチモーダル推論を実証するが、知識の衝突に直面した場合には幻覚を起こす傾向がある。
本研究は,VLMレジリエンスを知識衝突に対して調査するために,目標画像摂動を適用するフレームワークであるsegsubを紹介する。
論文 参考訳(メタデータ) (2025-02-19T00:26:38Z) - Insight Over Sight: Exploring the Vision-Knowledge Conflicts in Multimodal LLMs [55.74117540987519]
本稿では,マルチモーダル大言語モデル(MLLM)におけるコモンセンスレベル・ビジョン・知識衝突の問題について考察する。
MLLMにおけるこれらの競合をシミュレートし、評価するために設計された入力を生成するために、人間のループ品質制御を付加した自動フレームワークを導入する。
このフレームワークを用いて、374のオリジナル画像と1,122の高品質な質問応答対からなる診断ベンチマークを構築した。
論文 参考訳(メタデータ) (2024-10-10T17:31:17Z) - ECon: On the Detection and Resolution of Evidence Conflicts [56.89209046429291]
大規模言語モデル(LLM)の台頭は意思決定システムにおける情報の質に大きな影響を与えている。
本研究では,実世界の誤情報シナリオをシミュレートするために,多様で検証された証拠衝突を生成する手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T07:41:17Z) - Unraveling Cross-Modality Knowledge Conflicts in Large Vision-Language Models [33.76903352835436]
LVLM(Large Vision-Language Models)は、マルチモーダル入力をキャプチャし、推論する能力を示す。
これらのモデルは、そのビジョンと言語コンポーネント間の表現された知識の不整合から生じるパラメトリックな知識の衝突を招きやすい。
我々は、それらを検出し、解釈し、緩和するための体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-04T17:59:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。