Explaining, Fast and Slow: Abstraction and Refinement of Provable Explanations
- URL: http://arxiv.org/abs/2506.08505v1
- Date: Tue, 10 Jun 2025 07:04:13 GMT
- Title: Explaining, Fast and Slow: Abstraction and Refinement of Provable Explanations
- Authors: Shahaf Bassan, Yizhak Yisrael Elboher, Tobias Ladner, Matthias Althoff, Guy Katz,
- Abstract summary: We propose a novel abstraction-refinement technique for efficiently computing provably sufficient explanations of neural network predictions.<n>Our approach enhances the efficiency of obtaining provably sufficient explanations for neural network predictions while additionally providing a fine-grained interpretation of the network's predictions across different abstraction levels.
- Score: 6.902279764206365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite significant advancements in post-hoc explainability techniques for neural networks, many current methods rely on heuristics and do not provide formally provable guarantees over the explanations provided. Recent work has shown that it is possible to obtain explanations with formal guarantees by identifying subsets of input features that are sufficient to determine that predictions remain unchanged using neural network verification techniques. Despite the appeal of these explanations, their computation faces significant scalability challenges. In this work, we address this gap by proposing a novel abstraction-refinement technique for efficiently computing provably sufficient explanations of neural network predictions. Our method abstracts the original large neural network by constructing a substantially reduced network, where a sufficient explanation of the reduced network is also provably sufficient for the original network, hence significantly speeding up the verification process. If the explanation is in sufficient on the reduced network, we iteratively refine the network size by gradually increasing it until convergence. Our experiments demonstrate that our approach enhances the efficiency of obtaining provably sufficient explanations for neural network predictions while additionally providing a fine-grained interpretation of the network's predictions across different abstraction levels.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Expediting Neural Network Verification via Network Reduction [4.8621567234713305]
We propose a network reduction technique as a pre-processing method prior to verification.
The proposed method reduces neural networks via eliminating stable ReLU neurons, and transforming them into a sequential neural network.
We instantiate the reduction technique on the state-of-the-art complete and incomplete verification tools.
arXiv Detail & Related papers (2023-08-07T06:23:24Z) - Robust Explanation Constraints for Neural Networks [33.14373978947437]
Post-hoc explanation methods used with the intent of neural networks are sometimes said to help engender trust in their outputs.
Our training method is the only method able to learn neural networks with insights about robustness tested across all six tested networks.
arXiv Detail & Related papers (2022-12-16T14:40:25Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations [8.669319624657701]
The proposed method is model-agnostic, i.e., it can be utilised to explain any deep convolutional neural network models.<n>The evolved local explanations on four images, randomly selected from ImageNet, are presented.<n>The proposed method can obtain local explanations within one minute, which is more than ten times faster than LIME.
arXiv Detail & Related papers (2022-11-28T08:56:00Z) - Cardinality-Minimal Explanations for Monotonic Neural Networks [25.212444848632515]
In this paper, we investigate whether tractability can be regained by focusing on neural models implementing a monotonic function.
Although the relevant decision problems remain intractable, we can show that they become solvable in favourable time.
arXiv Detail & Related papers (2022-05-19T23:47:25Z) - A Lightweight, Efficient and Explainable-by-Design Convolutional Neural
Network for Internet Traffic Classification [9.365794791156972]
This paper introduces a new Lightweight, Efficient and eXplainable-by-design convolutional neural network (LEXNet) for Internet traffic classification.
LEXNet relies on a new residual block (for lightweight and efficiency purposes) and prototype layer (for explainability)
Based on a commercial-grade dataset, our evaluation shows that LEXNet succeeds to maintain the same accuracy as the best performing state-of-the-art neural network.
arXiv Detail & Related papers (2022-02-11T10:21:34Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - Multivariate Deep Evidential Regression [77.34726150561087]
A new approach with uncertainty-aware neural networks shows promise over traditional deterministic methods.
We discuss three issues with a proposed solution to extract aleatoric and epistemic uncertainties from regression-based neural networks.
arXiv Detail & Related papers (2021-04-13T12:20:18Z) - Scalable Verification of Quantized Neural Networks (Technical Report) [14.04927063847749]
We show that bit-exact implementation of quantized neural networks with bit-vector specifications is PSPACE-hard.
We propose three techniques for making SMT-based verification of quantized neural networks more scalable.
arXiv Detail & Related papers (2020-12-15T10:05:37Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z) - How Much Can I Trust You? -- Quantifying Uncertainties in Explaining
Neural Networks [19.648814035399013]
Explainable AI (XAI) aims to provide interpretations for predictions made by learning machines, such as deep neural networks.
We propose a new framework that allows to convert any arbitrary explanation method for neural networks into an explanation method for Bayesian neural networks.
We demonstrate the effectiveness and usefulness of our approach extensively in various experiments.
arXiv Detail & Related papers (2020-06-16T08:54:42Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.