論文の概要: TrajFlow: Multi-modal Motion Prediction via Flow Matching
- arxiv url: http://arxiv.org/abs/2506.08541v1
- Date: Tue, 10 Jun 2025 08:08:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:41.864043
- Title: TrajFlow: Multi-modal Motion Prediction via Flow Matching
- Title(参考訳): TrajFlow:フローマッチングによるマルチモーダルモーション予測
- Authors: Qi Yan, Brian Zhang, Yutong Zhang, Daniel Yang, Joshua White, Di Chen, Jiachao Liu, Langechuan Liu, Binnan Zhuang, Shaoshuai Shi, Renjie Liao,
- Abstract要約: 本稿では,新しいフローマッチングに基づく動き予測フレームワークであるTrajFlowを紹介する。
TrajFlowは1回のパスで複数の可算な将来の軌跡を予測し、計算オーバーヘッドを大幅に削減する。
さまざまな主要なメトリクスにわたって最先端のパフォーマンスを達成し、安全クリティカルな自動運転アプリケーションの有効性を裏付ける。
- 参考スコア(独自算出の注目度): 29.274577509291973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient and accurate motion prediction is crucial for ensuring safety and informed decision-making in autonomous driving, particularly under dynamic real-world conditions that necessitate multi-modal forecasts. We introduce TrajFlow, a novel flow matching-based motion prediction framework that addresses the scalability and efficiency challenges of existing generative trajectory prediction methods. Unlike conventional generative approaches that employ i.i.d. sampling and require multiple inference passes to capture diverse outcomes, TrajFlow predicts multiple plausible future trajectories in a single pass, significantly reducing computational overhead while maintaining coherence across predictions. Moreover, we propose a ranking loss based on the Plackett-Luce distribution to improve uncertainty estimation of predicted trajectories. Additionally, we design a self-conditioning training technique that reuses the model's own predictions to construct noisy inputs during a second forward pass, thereby improving generalization and accelerating inference. Extensive experiments on the large-scale Waymo Open Motion Dataset (WOMD) demonstrate that TrajFlow achieves state-of-the-art performance across various key metrics, underscoring its effectiveness for safety-critical autonomous driving applications. The code and other details are available on the project website https://traj-flow.github.io/.
- Abstract(参考訳): 効率的な正確な動き予測は、特にマルチモーダル予測を必要とする動的現実環境下での自律運転における安全と情報決定の確保に不可欠である。
本稿では,既存の生成軌道予測手法のスケーラビリティと効率性に対処する,新しいフローマッチングに基づく動き予測フレームワークであるTrajFlowを紹介する。
様々な結果を取得するために複数の推論パスをサンプリングし要求する従来の生成的アプローチとは異なり、TrajFlowは1回のパスで複数の予測可能な将来の軌跡を予測し、予測のコヒーレンスを維持しながら計算オーバーヘッドを大幅に削減する。
さらに,予測軌道の不確実性評価を改善するために,Planet-Luce分布に基づくランキング損失を提案する。
さらに、モデル自身の予測を再利用して第2の前方通過時にノイズの多い入力を構築する自己条件学習手法を設計し、一般化と推論の高速化を図る。
大規模なWaymo Open Motion Dataset(WOMD)に関する大規模な実験は、TrajFlowがさまざまな重要なメトリクスにわたって最先端のパフォーマンスを達成し、安全クリティカルな自動運転アプリケーションの有効性を実証している。
コードやその他の詳細はプロジェクトのWebサイトhttps://traj-flow.github.io/.com/で公開されている。
関連論文リスト
- TrajFlow: A Generative Framework for Occupancy Density Estimation Using Normalizing Flows [0.0]
交通システムや自動運転車では、インテリジェントエージェントは交通参加者の将来の動きを理解する必要がある。
本稿では,交通参加者の占有密度を推定する生成フレームワークであるTrajFlowを提案する。
論文 参考訳(メタデータ) (2025-01-24T06:09:09Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Certified Human Trajectory Prediction [66.1736456453465]
本稿では,ロバスト性を保証する軌道予測に適した認証手法を提案する。
そこで本研究では, 拡散型トラジェクトリデノイザを提案し, 本手法に組み込むことにより, 性能低下を緩和する。
認定された予測器の精度と堅牢性を実証し、認定されていない予測器に対するそれらの優位性を強調する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
自動運転車の安全かつ効率的な運転には、交通参加者の将来の軌跡を予測する能力が不可欠である。
本稿では,多エージェント軌道予測のための拡散モデルを提案する。
このモデルは、交通参加者と環境の間の複雑な相互作用を捉え、データのマルチモーダルな性質を正確に学習することができる。
論文 参考訳(メタデータ) (2024-03-18T10:35:15Z) - GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction [15.731398013255179]
マルチモーダル軌道予測のための木サンプリングを用いたゴールガイド拡散モデルを提案する。
2段階のツリーサンプリングアルゴリズムが提案され、一般的な特徴を活用して推論時間を短縮し、マルチモーダル予測の精度を向上させる。
実験により,提案フレームワークは,公開データセットにおけるリアルタイム推論速度と同等の最先端性能を達成できることが実証された。
論文 参考訳(メタデータ) (2023-11-25T03:55:06Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - FloMo: Tractable Motion Prediction with Normalizing Flows [0.0]
ノイズサンプルと将来の動き分布の正規化フローによる密度推定問題として動作予測をモデル化する。
我々のモデルはFloMoと呼ばれ、単一のネットワークパスで確率を計算でき、最大推定で直接訓練することができる。
提案手法は,3つの一般的な予測データセットにおいて最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-03-05T11:35:27Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。