Orientation Matters: Making 3D Generative Models Orientation-Aligned
- URL: http://arxiv.org/abs/2506.08640v1
- Date: Tue, 10 Jun 2025 09:54:37 GMT
- Title: Orientation Matters: Making 3D Generative Models Orientation-Aligned
- Authors: Yichong Lu, Yuzhuo Tian, Zijin Jiang, Yikun Zhao, Yuanbo Yang, Hao Ouyang, Haoji Hu, Huimin Yu, Yujun Shen, Yiyi Liao,
- Abstract summary: Existing 3D generative models often produce misaligned results due to inconsistent training data.<n>We introduce the task of orientation-aligned 3D object generation, producing 3D objects with consistent orientations across categories.<n>We fine-tune two representative 3D generative models based on multi-view diffusion and 3D variational autoencoder frameworks to produce intuitively aligned objects.
- Score: 39.941774172257105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans intuitively perceive object shape and orientation from a single image, guided by strong priors about canonical poses. However, existing 3D generative models often produce misaligned results due to inconsistent training data, limiting their usability in downstream tasks. To address this gap, we introduce the task of orientation-aligned 3D object generation: producing 3D objects from single images with consistent orientations across categories. To facilitate this, we construct Objaverse-OA, a dataset of 14,832 orientation-aligned 3D models spanning 1,008 categories. Leveraging Objaverse-OA, we fine-tune two representative 3D generative models based on multi-view diffusion and 3D variational autoencoder frameworks to produce aligned objects that generalize well to unseen objects across various categories. Experimental results demonstrate the superiority of our method over post-hoc alignment approaches. Furthermore, we showcase downstream applications enabled by our aligned object generation, including zero-shot object orientation estimation via analysis-by-synthesis and efficient arrow-based object rotation manipulation.
Related papers
- IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments [56.85804719947]
We present IAAO, a framework that builds an explicit 3D model for intelligent agents to gain understanding of articulated objects in their environment through interaction.<n>We first build hierarchical features and label fields for each object state using 3D Gaussian Splatting (3DGS) by distilling mask features and view-consistent labels from multi-view images.<n>We then perform object- and part-level queries on the 3D Gaussian primitives to identify static and articulated elements, estimating global transformations and local articulation parameters along with affordances.
arXiv Detail & Related papers (2025-04-09T12:36:48Z) - Orient Anything: Learning Robust Object Orientation Estimation from Rendering 3D Models [79.96917782423219]
Orient Anything is the first expert and foundational model designed to estimate object orientation in a single image.<n>By developing a pipeline to annotate the front face of 3D objects, we collect 2M images with precise orientation annotations.<n>Our model achieves state-of-the-art orientation estimation accuracy in both rendered and real images.
arXiv Detail & Related papers (2024-12-24T18:58:43Z) - A3D: Does Diffusion Dream about 3D Alignment? [73.97853402817405]
We tackle the problem of text-driven 3D generation from a geometry alignment perspective.<n>Given a set of text prompts, we aim to generate a collection of objects with semantically corresponding parts aligned across them.<n>We propose to embed these objects into a common latent space and optimize the continuous transitions between these objects.
arXiv Detail & Related papers (2024-06-21T09:49:34Z) - ComboVerse: Compositional 3D Assets Creation Using Spatially-Aware Diffusion Guidance [76.7746870349809]
We present ComboVerse, a 3D generation framework that produces high-quality 3D assets with complex compositions by learning to combine multiple models.
Our proposed framework emphasizes spatial alignment of objects, compared with standard score distillation sampling.
arXiv Detail & Related papers (2024-03-19T03:39:43Z) - Explicit3D: Graph Network with Spatial Inference for Single Image 3D
Object Detection [35.85544715234846]
We propose a dynamic sparse graph pipeline named Explicit3D based on object geometry and semantics features.
Our experimental results on the SUN RGB-D dataset demonstrate that our Explicit3D achieves better performance balance than the-state-of-the-art.
arXiv Detail & Related papers (2023-02-13T16:19:54Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
We propose a novel framework for category-level object shape and pose estimation from a single RGB-D image.
To handle the intra-category variation, we adopt a semantic primitive representation that encodes diverse shapes into a unified latent space.
We show that the proposed method achieves SOTA pose estimation performance and better generalization in the real-world dataset.
arXiv Detail & Related papers (2022-10-03T17:51:54Z) - Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning
of 3D Pose [10.028521796737314]
We study the problem of learning to estimate the 3D object pose from a few labelled examples and a collection of unlabelled data.
Our main contribution is a learning framework, neural view synthesis and matching, that can transfer the 3D pose annotation from the labelled to unlabelled images reliably.
arXiv Detail & Related papers (2021-10-27T06:53:53Z) - Adjoint Rigid Transform Network: Task-conditioned Alignment of 3D Shapes [86.2129580231191]
Adjoint Rigid Transform (ART) Network is a neural module which can be integrated with a variety of 3D networks.
ART learns to rotate input shapes to a learned canonical orientation, which is crucial for a lot of tasks.
We will release our code and pre-trained models for further research.
arXiv Detail & Related papers (2021-02-01T20:58:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.