論文の概要: Optimizing Learned Image Compression on Scalar and Entropy-Constraint Quantization
- arxiv url: http://arxiv.org/abs/2506.08662v1
- Date: Tue, 10 Jun 2025 10:22:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:42.278004
- Title: Optimizing Learned Image Compression on Scalar and Entropy-Constraint Quantization
- Title(参考訳): スカラーおよびエントロピー制約量子化による学習画像圧縮の最適化
- Authors: Florian Borzechowski, Michael Schäfer, Heiko Schwarz, Jonathan Pfaff, Detlev Marpe, Thomas Wiegand,
- Abstract要約: 正しい量子化データに対する再トレーニングは、一様スカラーおよび特にエントロピー制約量子化に対して、一貫した符号化ゲインをもたらすことを示す。
Kodakテストセットでは、平均貯蓄率1%から2%、TecNickテストではBjontegaard-Deltaの2.2%に設定されている。
- 参考スコア(独自算出の注目度): 8.95146413290727
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The continuous improvements on image compression with variational autoencoders have lead to learned codecs competitive with conventional approaches in terms of rate-distortion efficiency. Nonetheless, taking the quantization into account during the training process remains a problem, since it produces zero derivatives almost everywhere and needs to be replaced with a differentiable approximation which allows end-to-end optimization. Though there are different methods for approximating the quantization, none of them model the quantization noise correctly and thus, result in suboptimal networks. Hence, we propose an additional finetuning training step: After conventional end-to-end training, parts of the network are retrained on quantized latents obtained at the inference stage. For entropy-constraint quantizers like Trellis-Coded Quantization, the impact of the quantizer is particularly difficult to approximate by rounding or adding noise as the quantized latents are interdependently chosen through a trellis search based on both the entropy model and a distortion measure. We show that retraining on correctly quantized data consistently yields additional coding gain for both uniform scalar and especially for entropy-constraint quantization, without increasing inference complexity. For the Kodak test set, we obtain average savings between 1% and 2%, and for the TecNick test set up to 2.2% in terms of Bj{\o}ntegaard-Delta bitrate.
- Abstract(参考訳): 可変オートエンコーダによる画像圧縮の継続的な改善は、レート歪み効率の点で従来の手法と競合する学習コーデックを生み出した。
それでも、量子化をトレーニングプロセス中に考慮に入れることは問題であり、ほとんど至るところで微分をゼロにし、エンドツーエンドの最適化を可能にする微分近似に置き換える必要がある。
量子化の近似には異なる方法があるが、いずれも量子化ノイズを正しくモデル化しておらず、結果として準最適ネットワークとなる。
そこで,本研究では,従来のエンド・ツー・エンドトレーニングの後,推論段階で得られた量子化潜水器を用いてネットワークの一部をトレーニングする。
Trellis-Coded Quantizationのようなエントロピー制約量子化器の場合、量子化潜水剤はエントロピーモデルと歪み測定の両方に基づいてトレリスサーチによって相互に選択されるため、量子化器の影響は特にラウンドリングやノイズの追加によって近似することが困難である。
正しい量子化データに対する再トレーニングは、推論複雑性を増大させることなく、一様スカラーおよび特にエントロピー制約量子化の両方に対して、一貫した符号化ゲインが得られることを示す。
Kodakテストセットでは、平均貯蓄率を1%から2%に、TecNickテストではBj{\o}ntegaard-Deltaビットレートを2.2%に設定する。
関連論文リスト
- QSpec: Speculative Decoding with Complementary Quantization Schemes [37.007621357142725]
量子化は、推論を加速し、大きな言語モデルのメモリ消費を減らすために、実質的に採用されている。
本稿では、投機的復号化のための2つの相補的量子化スキームをシームレスに統合するQSPECと呼ばれる新しい量子化パラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-15T05:57:51Z) - 2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution [83.09117439860607]
低ビット量子化は、エッジ展開のための画像超解像(SR)モデルを圧縮するために広く普及している。
低ビット量子化は、フル精度(FP)と比較してSRモデルの精度を低下させることが知られている。
本稿では2DQuantという画像超解像のための2段階の低ビット後量子化(PTQ)法を提案する。
論文 参考訳(メタデータ) (2024-06-10T06:06:11Z) - RepQuant: Towards Accurate Post-Training Quantization of Large
Transformer Models via Scale Reparameterization [8.827794405944637]
ポストトレーニング量子化(PTQ)は、大きなトランスモデルを圧縮するための有望な解である。
既存のPTQメソッドは、通常、非自明な性能損失を示す。
本稿では、量子化推論デカップリングパラダイムを備えた新しいPTQフレームワークRepQuantを提案する。
論文 参考訳(メタデータ) (2024-02-08T12:35:41Z) - Error-aware Quantization through Noise Tempering [43.049102196902844]
量子化対応トレーニング(QAT)は、量子化エラーをシミュレートしながら、エンドタスクに関するモデルパラメータを最適化する。
本研究では,指数関数的に減衰する量子化・エラー認識ノイズと,学習可能なタスク損失勾配のスケールを組み込んで量子化演算子の効果を近似する。
本手法は, 従来の手法を0.5-1.2%絶対値で上回り, 均一な(非混合精度)量子化のための最先端トップ1分類精度を得る。
論文 参考訳(メタデータ) (2022-12-11T20:37:50Z) - CSQ: Growing Mixed-Precision Quantization Scheme with Bi-level
Continuous Sparsification [51.81850995661478]
混合精度量子化はディープニューラルネットワーク(DNN)に広く応用されている
トレーニング中のビットレベル正規化とプルーニングに基づく動的精度調整の試みは、ノイズ勾配と不安定収束に悩まされている。
安定度を向上した混合精度量子化スキームを探索するビットレベル学習法である連続スカラー化量子化(CSQ)を提案する。
論文 参考訳(メタデータ) (2022-12-06T05:44:21Z) - NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization
for Vision Transformers [53.85087932591237]
NoisyQuantは、視覚変換器のトレーニング後のアクティベーション量子化性能に対する量子化器に依存しない拡張である。
理論的な洞察に基づいて、NoisyQuantは重い尾の活性化分布を積極的に変化させる最初の成功を達成している。
NoisyQuantは、最小の計算オーバーヘッドで視覚変換器のトレーニング後の量子化性能を大幅に改善する。
論文 参考訳(メタデータ) (2022-11-29T10:02:09Z) - Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via
Generalized Straight-Through Estimation [48.838691414561694]
非一様量子化(英: Nonuniform-to-Uniform Quantization、N2UQ)は、ハードウェアフレンドリーで効率的な非一様法の強力な表現能力を維持できる方法である。
N2UQはImageNet上で最先端の非一様量子化法を0.71.8%上回る。
論文 参考訳(メタデータ) (2021-11-29T18:59:55Z) - Mixed Precision of Quantization of Transformer Language Models for
Speech Recognition [67.95996816744251]
トランスフォーマーが表現する最先端のニューラルネットワークモデルは、実用アプリケーションにとってますます複雑で高価なものになりつつある。
現在の低ビット量子化法は、均一な精度に基づいており、量子化エラーに対するシステムの異なる部分での様々な性能感度を考慮できない。
最適局所精度設定は2つの手法を用いて自動的に学習される。
Penn Treebank (PTB)とSwitchboard corpusによるLF-MMI TDNNシステムの試験を行った。
論文 参考訳(メタデータ) (2021-11-29T09:57:00Z) - Quantized Proximal Averaging Network for Analysis Sparse Coding [23.080395291046408]
反復アルゴリズムをトレーニング可能なネットワークに展開し,量子化前にスパーシティの学習を容易にする。
圧縮画像回復と磁気共鳴画像再構成への応用を実証する。
論文 参考訳(メタデータ) (2021-05-13T12:05:35Z) - One Model for All Quantization: A Quantized Network Supporting Hot-Swap
Bit-Width Adjustment [36.75157407486302]
多様なビット幅をサポートする全量子化のためのモデルを訓練する手法を提案する。
重みの多様性を高めるためにウェーブレット分解と再構成を用いる。
同じ精度で訓練された専用モデルに匹敵する精度が得られる。
論文 参考訳(メタデータ) (2021-05-04T08:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。