MoSiC: Optimal-Transport Motion Trajectory for Dense Self-Supervised Learning
- URL: http://arxiv.org/abs/2506.08694v2
- Date: Thu, 10 Jul 2025 08:39:59 GMT
- Title: MoSiC: Optimal-Transport Motion Trajectory for Dense Self-Supervised Learning
- Authors: Mohammadreza Salehi, Shashanka Venkataramanan, Ioana Simion, Efstratios Gavves, Cees G. M. Snoek, Yuki M Asano,
- Abstract summary: We propose a motion-guided self-learning framework that learns densely consistent representations.<n>We improve state-of-the-art by 1% to 6% on six image and video datasets and four evaluation benchmarks.
- Score: 66.53533434848369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dense self-supervised learning has shown great promise for learning pixel- and patch-level representations, but extending it to videos remains challenging due to the complexity of motion dynamics. Existing approaches struggle as they rely on static augmentations that fail under object deformations, occlusions, and camera movement, leading to inconsistent feature learning over time. We propose a motion-guided self-supervised learning framework that clusters dense point tracks to learn spatiotemporally consistent representations. By leveraging an off-the-shelf point tracker, we extract long-range motion trajectories and optimize feature clustering through a momentum-encoder-based optimal transport mechanism. To ensure temporal coherence, we propagate cluster assignments along tracked points, enforcing feature consistency across views despite viewpoint changes. Integrating motion as an implicit supervisory signal, our method learns representations that generalize across frames, improving robustness in dynamic scenes and challenging occlusion scenarios. By initializing from strong image-pretrained models and leveraging video data for training, we improve state-of-the-art by 1% to 6% on six image and video datasets and four evaluation benchmarks. The implementation is publicly available at our GitHub repository: https://github.com/SMSD75/MoSiC/tree/main
Related papers
- Efficient Motion Prompt Learning for Robust Visual Tracking [58.59714916705317]
We propose a lightweight and plug-and-play motion prompt tracking method.<n>It can be easily integrated into existing vision-based trackers to build a joint tracking framework.<n>Experiments on seven tracking benchmarks demonstrate that the proposed motion module significantly improves the robustness of vision-based trackers.
arXiv Detail & Related papers (2025-05-22T07:22:58Z) - Tracktention: Leveraging Point Tracking to Attend Videos Faster and Better [61.381599921020175]
Temporal consistency is critical in video prediction to ensure that outputs are coherent and free of artifacts.<n>Traditional methods, such as temporal attention and 3D convolution, may struggle with significant object motion.<n>We propose the Tracktention Layer, a novel architectural component that explicitly integrates motion information using point tracks.
arXiv Detail & Related papers (2025-03-25T17:58:48Z) - PreViTS: Contrastive Pretraining with Video Tracking Supervision [53.73237606312024]
PreViTS is an unsupervised SSL framework for selecting clips containing the same object.
PreViTS spatially constrains the frame regions to learn from and trains the model to locate meaningful objects.
We train a momentum contrastive (MoCo) encoder on VGG-Sound and Kinetics-400 datasets with PreViTS.
arXiv Detail & Related papers (2021-12-01T19:49:57Z) - Self-Supervised Pillar Motion Learning for Autonomous Driving [10.921208239968827]
We propose a learning framework that leverages free supervisory signals from point clouds and paired camera images to estimate motion purely via self-supervision.
Our model involves a point cloud based structural consistency augmented with probabilistic motion masking as well as a cross-sensor motion regularization to realize the desired self-supervision.
arXiv Detail & Related papers (2021-04-18T02:32:08Z) - Learning to Segment Rigid Motions from Two Frames [72.14906744113125]
We propose a modular network, motivated by a geometric analysis of what independent object motions can be recovered from an egomotion field.
It takes two consecutive frames as input and predicts segmentation masks for the background and multiple rigidly moving objects, which are then parameterized by 3D rigid transformations.
Our method achieves state-of-the-art performance for rigid motion segmentation on KITTI and Sintel.
arXiv Detail & Related papers (2021-01-11T04:20:30Z) - Self-supervised Video Object Segmentation [76.83567326586162]
The objective of this paper is self-supervised representation learning, with the goal of solving semi-supervised video object segmentation (a.k.a. dense tracking)
We make the following contributions: (i) we propose to improve the existing self-supervised approach, with a simple, yet more effective memory mechanism for long-term correspondence matching; (ii) by augmenting the self-supervised approach with an online adaptation module, our method successfully alleviates tracker drifts caused by spatial-temporal discontinuity; (iv) we demonstrate state-of-the-art results among the self-supervised approaches on DAVIS-2017 and YouTube
arXiv Detail & Related papers (2020-06-22T17:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.