InfoDPCCA: Information-Theoretic Dynamic Probabilistic Canonical Correlation Analysis
- URL: http://arxiv.org/abs/2506.08884v1
- Date: Tue, 10 Jun 2025 15:13:48 GMT
- Title: InfoDPCCA: Information-Theoretic Dynamic Probabilistic Canonical Correlation Analysis
- Authors: Shiqin Tang, Shujian Yu,
- Abstract summary: InfoDPCCA is a framework designed to model two interdependent sequences of observations.<n>We introduce a two-step training scheme to bridge the gap between information-theoretic representation learning and generative modeling.<n>We demonstrate that InfoDPCCA excels as a tool for representation learning.
- Score: 20.656410520966986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting meaningful latent representations from high-dimensional sequential data is a crucial challenge in machine learning, with applications spanning natural science and engineering. We introduce InfoDPCCA, a dynamic probabilistic Canonical Correlation Analysis (CCA) framework designed to model two interdependent sequences of observations. InfoDPCCA leverages a novel information-theoretic objective to extract a shared latent representation that captures the mutual structure between the data streams and balances representation compression and predictive sufficiency while also learning separate latent components that encode information specific to each sequence. Unlike prior dynamic CCA models, such as DPCCA, our approach explicitly enforces the shared latent space to encode only the mutual information between the sequences, improving interpretability and robustness. We further introduce a two-step training scheme to bridge the gap between information-theoretic representation learning and generative modeling, along with a residual connection mechanism to enhance training stability. Through experiments on synthetic and medical fMRI data, we demonstrate that InfoDPCCA excels as a tool for representation learning. Code of InfoDPCCA is available at https://github.com/marcusstang/InfoDPCCA.
Related papers
- Information-theoretic Quantification of High-order Feature Effects in Classification Problems [0.19791587637442676]
We present an information-theoretic extension of the High-order interactions for Feature importance (Hi-Fi) method.<n>Our framework decomposes feature contributions into unique, synergistic, and redundant components.<n>Results indicate that the proposed estimator accurately recovers theoretical and expected findings.
arXiv Detail & Related papers (2025-07-06T11:50:30Z) - Deep Dynamic Probabilistic Canonical Correlation Analysis [16.82419839795058]
Deep Dynamic Probabilistic Canonical Correlation Analysis (D2PCCA) is a model that integrates deep learning with probabilistic modeling to analyze nonlinear dynamical systems.<n>Building on the probabilistic extensions of Canonical Correlation Analysis (CCA), D2PCCA captures nonlinear latent dynamics.<n>D2PCCA naturally extends to multiple observed variables, making it a versatile tool for encoding prior knowledge about sequential datasets.
arXiv Detail & Related papers (2025-02-07T18:37:57Z) - Images in Discrete Choice Modeling: Addressing Data Isomorphism in
Multi-Modality Inputs [77.54052164713394]
This paper explores the intersection of Discrete Choice Modeling (DCM) and machine learning.
We investigate the consequences of embedding high-dimensional image data that shares isomorphic information with traditional tabular inputs within a DCM framework.
arXiv Detail & Related papers (2023-12-22T14:33:54Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Compressed Predictive Information Coding [6.220929746808418]
We develop a novel information-theoretic framework, Compressed Predictive Information Coding (CPIC), to extract useful representations from dynamic data.
We derive variational bounds of the CPIC loss which induces the latent space to capture information that is maximally predictive.
We demonstrate that CPIC is able to recover the latent space of noisy dynamical systems with low signal-to-noise ratios.
arXiv Detail & Related papers (2022-03-03T22:47:58Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
We propose a novel correlation-driven joint-bone fusion graph convolutional network (CD-JBF-GCN) as an encoder and use a pose prediction head as a decoder.
Specifically, the CD-JBF-GC can explore the motion transmission between the joint stream and the bone stream.
The pose prediction based auto-encoder in the self-supervised training stage allows the network to learn motion representation from unlabeled data.
arXiv Detail & Related papers (2022-02-08T16:03:15Z) - Multi-modality fusion using canonical correlation analysis methods:
Application in breast cancer survival prediction from histology and genomics [16.537929113715432]
We study the use of canonical correlation analysis (CCA) and penalized variants of CCA for the fusion of two modalities.
We analytically show that, with known model parameters, posterior mean estimators that jointly use both modalities outperform arbitrary linear mixing of single modality posterior estimators in latent variable prediction.
arXiv Detail & Related papers (2021-11-27T21:18:01Z) - Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectomics data for Multidimensional Clinical Characterizations [5.200461964737113]
We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography.
Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores.
Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization.
arXiv Detail & Related papers (2020-08-27T23:43:56Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Repulsive Mixture Models of Exponential Family PCA for Clustering [127.90219303669006]
The mixture extension of exponential family principal component analysis ( EPCA) was designed to encode much more structural information about data distribution than the traditional EPCA.
The traditional mixture of local EPCAs has the problem of model redundancy, i.e., overlaps among mixing components, which may cause ambiguity for data clustering.
In this paper, a repulsiveness-encouraging prior is introduced among mixing components and a diversified EPCA mixture (DEPCAM) model is developed in the Bayesian framework.
arXiv Detail & Related papers (2020-04-07T04:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.