AdversariaL attacK sAfety aLIgnment(ALKALI): Safeguarding LLMs through GRACE: Geometric Representation-Aware Contrastive Enhancement- Introducing Adversarial Vulnerability Quality Index (AVQI)
- URL: http://arxiv.org/abs/2506.08885v2
- Date: Wed, 11 Jun 2025 05:27:54 GMT
- Title: AdversariaL attacK sAfety aLIgnment(ALKALI): Safeguarding LLMs through GRACE: Geometric Representation-Aware Contrastive Enhancement- Introducing Adversarial Vulnerability Quality Index (AVQI)
- Authors: Danush Khanna, Krishna Kumar, Basab Ghosh, Vinija Jain, Vasu Sharma, Aman Chadha, Amitava Das,
- Abstract summary: Adversarial threats against LLMs are escalating faster than current defenses can adapt.<n>We introduce ALKALI, the first rigorously curated adversarial benchmark.<n>We introduce GRACE, an alignment framework coupling preference learning with latent space regularization.
- Score: 7.628249019494587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial threats against LLMs are escalating faster than current defenses can adapt. We expose a critical geometric blind spot in alignment: adversarial prompts exploit latent camouflage, embedding perilously close to the safe representation manifold while encoding unsafe intent thereby evading surface level defenses like Direct Preference Optimization (DPO), which remain blind to the latent geometry. We introduce ALKALI, the first rigorously curated adversarial benchmark and the most comprehensive to date spanning 9,000 prompts across three macro categories, six subtypes, and fifteen attack families. Evaluation of 21 leading LLMs reveals alarmingly high Attack Success Rates (ASRs) across both open and closed source models, exposing an underlying vulnerability we term latent camouflage, a structural blind spot where adversarial completions mimic the latent geometry of safe ones. To mitigate this vulnerability, we introduce GRACE - Geometric Representation Aware Contrastive Enhancement, an alignment framework coupling preference learning with latent space regularization. GRACE enforces two constraints: latent separation between safe and adversarial completions, and adversarial cohesion among unsafe and jailbreak behaviors. These operate over layerwise pooled embeddings guided by a learned attention profile, reshaping internal geometry without modifying the base model, and achieve up to 39% ASR reduction. Moreover, we introduce AVQI, a geometry aware metric that quantifies latent alignment failure via cluster separation and compactness. AVQI reveals when unsafe completions mimic the geometry of safe ones, offering a principled lens into how models internally encode safety. We make the code publicly available at https://anonymous.4open.science/r/alkali-B416/README.md.
Related papers
- The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs [39.85609149662187]
We present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs.<n>Our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs.<n>Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models.
arXiv Detail & Related papers (2025-07-15T08:44:46Z) - Circumventing Safety Alignment in Large Language Models Through Embedding Space Toxicity Attenuation [13.971909819796762]
Large Language Models (LLMs) have achieved remarkable success across domains such as healthcare, education, and cybersecurity.<n>Embedding space poisoning is a subtle attack vector where adversaries manipulate the internal semantic representations of input data to bypass safety alignment mechanisms.<n>We propose ETTA, a novel framework that identifies and attenuates toxicity-sensitive dimensions in embedding space via linear transformations.
arXiv Detail & Related papers (2025-07-08T03:01:00Z) - Probing the Robustness of Large Language Models Safety to Latent Perturbations [30.16804362984161]
Safety alignment is a key requirement for building reliable Artificial General Intelligence.<n>We observe that minor latent shifts can still trigger unsafe responses in aligned models.<n>We introduce Layer-wise Adversarial Patch Training(LAPT), a fine-tuning strategy that injects controlled perturbations into hidden representations during training.
arXiv Detail & Related papers (2025-06-19T07:03:05Z) - Robust Anti-Backdoor Instruction Tuning in LVLMs [53.766434746801366]
We introduce a lightweight, certified-agnostic defense framework for large visual language models (LVLMs)<n>Our framework finetunes only adapter modules and text embedding layers under instruction tuning.<n>Experiments against seven attacks on Flickr30k and MSCOCO demonstrate that ours reduces their attack success rate to nearly zero.
arXiv Detail & Related papers (2025-06-04T01:23:35Z) - JailBound: Jailbreaking Internal Safety Boundaries of Vision-Language Models [26.838410830637304]
Vision-Language Models (VLMs) exhibit impressive performance, yet the integration of powerful vision encoders has significantly broadened their attack surface.<n>We propose JailBound, a novel latent space jailbreak framework comprising two stages: Safety Boundary Probing and Safety Boundary Crossing.<n>Our results show that JailBound achieves 94.32% white-box and 67.28% black-box attack success averagely, which are 6.17% and 21.13% higher than SOTA methods, respectively.
arXiv Detail & Related papers (2025-05-26T07:23:00Z) - Alignment Under Pressure: The Case for Informed Adversaries When Evaluating LLM Defenses [6.736255552371404]
Alignment is one of the main approaches used to defend against attacks such as prompt injection and jailbreaks.<n>Recent defenses report near-zero Attack Success Rates (ASR) even against Greedy Coordinate Gradient (GCG)
arXiv Detail & Related papers (2025-05-21T16:43:17Z) - Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs [83.11815479874447]
We propose a novel jailbreak attack framework, inspired by cognitive decomposition and biases in human cognition.<n>We employ cognitive decomposition to reduce the complexity of malicious prompts and relevance bias to reorganize prompts.<n>We also introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm.
arXiv Detail & Related papers (2025-05-03T05:28:11Z) - CeTAD: Towards Certified Toxicity-Aware Distance in Vision Language Models [16.5022773312661]
We propose a universal certified defence framework to safeguard large vision-language models against jailbreak attacks.<n>First, we proposed a novel distance metric to quantify semantic discrepancies between malicious and intended responses.<n>Then, we devise a regressed certification approach that employs randomized smoothing to provide formal robustness guarantees.
arXiv Detail & Related papers (2025-03-08T17:33:55Z) - Improving LLM Safety Alignment with Dual-Objective Optimization [65.41451412400609]
Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks.<n>We propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge.
arXiv Detail & Related papers (2025-03-05T18:01:05Z) - Towards Copyright Protection for Knowledge Bases of Retrieval-augmented Language Models via Reasoning [58.57194301645823]
Large language models (LLMs) are increasingly integrated into real-world personalized applications.<n>The valuable and often proprietary nature of the knowledge bases used in RAG introduces the risk of unauthorized usage by adversaries.<n>Existing methods that can be generalized as watermarking techniques to protect these knowledge bases typically involve poisoning or backdoor attacks.<n>We propose name for harmless' copyright protection of knowledge bases.
arXiv Detail & Related papers (2025-02-10T09:15:56Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
We show that the continuous and high-dimensional nature of the visual input makes it a weak link against adversarial attacks.
We exploit visual adversarial examples to circumvent the safety guardrail of aligned LLMs with integrated vision.
Our study underscores the escalating adversarial risks associated with the pursuit of multimodality.
arXiv Detail & Related papers (2023-06-22T22:13:03Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.