Protriever: End-to-End Differentiable Protein Homology Search for Fitness Prediction
- URL: http://arxiv.org/abs/2506.08954v1
- Date: Tue, 10 Jun 2025 16:24:09 GMT
- Title: Protriever: End-to-End Differentiable Protein Homology Search for Fitness Prediction
- Authors: Ruben Weitzman, Peter Mørch Groth, Lood Van Niekerk, Aoi Otani, Yarin Gal, Debora Marks, Pascal Notin,
- Abstract summary: Protriever is an end-to-end differentiable framework that learns to retrieve relevant homologs while simultaneously training for the target task.<n>We introduce Protriever, an end-to-end differentiable framework that learns to retrieve relevant homologs while simultaneously training for the target task.
- Score: 28.150437140009025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieving homologous protein sequences is essential for a broad range of protein modeling tasks such as fitness prediction, protein design, structure modeling, and protein-protein interactions. Traditional workflows have relied on a two-step process: first retrieving homologs via Multiple Sequence Alignments (MSA), then training models on one or more of these alignments. However, MSA-based retrieval is computationally expensive, struggles with highly divergent sequences or complex insertions & deletions patterns, and operates independently of the downstream modeling objective. We introduce Protriever, an end-to-end differentiable framework that learns to retrieve relevant homologs while simultaneously training for the target task. When applied to protein fitness prediction, Protriever achieves state-of-the-art performance compared to sequence-based models that rely on MSA-based homolog retrieval, while being two orders of magnitude faster through efficient vector search. Protriever is both architecture- and task-agnostic, and can flexibly adapt to different retrieval strategies and protein databases at inference time -- offering a scalable alternative to alignment-centric approaches.
Related papers
- AMix-1: A Pathway to Test-Time Scalable Protein Foundation Model [92.51919604882984]
We introduce AMix-1, a powerful protein foundation model built on Flow Bayesian Networks.<n>AMix-1 is empowered by a systematic training methodology, encompassing pretraining scaling laws, emergent capability analysis, in-context learning mechanism, and test-time scaling algorithm.<n>Building on this foundation, we devise a multiple sequence alignment (MSA)-based in-context learning strategy to unify protein design into a general framework.
arXiv Detail & Related papers (2025-07-11T17:02:25Z) - PRING: Rethinking Protein-Protein Interaction Prediction from Pairs to Graphs [80.08310253195144]
PRING is the first benchmark that evaluates protein-protein interaction prediction from a graph-level perspective.<n> PRING curates a high-quality, multi-species PPI network dataset comprising 21,484 proteins and 186,818 interactions.
arXiv Detail & Related papers (2025-07-07T15:21:05Z) - Multi-Scale Representation Learning for Protein Fitness Prediction [31.735234482320283]
Previous methods have primarily relied on self-supervised models trained on vast, unlabeled protein sequence or structure datasets.<n>We introduce the Sequence-Structure-Surface Fitness (S3F) model - a novel multimodal representation learning framework that integrates protein features across several scales.<n>Our approach combines sequence representations from a protein language model with Geometric Vector Perceptron networks encoding protein backbone and detailed surface topology.
arXiv Detail & Related papers (2024-12-02T04:28:10Z) - SeqProFT: Applying LoRA Finetuning for Sequence-only Protein Property Predictions [8.112057136324431]
This study employs the LoRA method to perform end-to-end fine-tuning of the ESM-2 model.
A multi-head attention mechanism is integrated into the downstream network to combine sequence features with contact map information.
arXiv Detail & Related papers (2024-11-18T12:40:39Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - A PLMs based protein retrieval framework [3.878994100846403]
We propose a novel protein retrieval framework that mitigates the bias towards sequence similarity.<n>Our framework initiatively harnesses protein language models (PLMs) to embed protein sequences within a high-dimensional feature space.<n>Extensive experiments demonstrate that our framework can equally retrieve both similar and dissimilar proteins.
arXiv Detail & Related papers (2024-07-16T09:52:42Z) - PSC-CPI: Multi-Scale Protein Sequence-Structure Contrasting for
Efficient and Generalizable Compound-Protein Interaction Prediction [63.50967073653953]
Compound-Protein Interaction prediction aims to predict the pattern and strength of compound-protein interactions for rational drug discovery.
Existing deep learning-based methods utilize only the single modality of protein sequences or structures.
We propose a novel multi-scale Protein Sequence-structure Contrasting framework for CPI prediction.
arXiv Detail & Related papers (2024-02-13T03:51:10Z) - Progressive Multi-Modality Learning for Inverse Protein Folding [47.095862120116976]
We propose a novel protein design paradigm called MMDesign, which leverages multi-modality transfer learning.
MMDesign is the first framework that combines a pretrained structural module with a pretrained contextual module, using an auto-encoder (AE) based language model to incorporate prior protein semantic knowledge.
Experimental results, only training with the small dataset, demonstrate that MMDesign consistently outperforms baselines on various public benchmarks.
arXiv Detail & Related papers (2023-12-11T10:59:23Z) - Predicting protein variants with equivariant graph neural networks [0.0]
We compare the abilities of equivariant graph neural networks (EGNNs) and sequence-based approaches to identify promising amino-acid mutations.
Our proposed structural approach achieves a competitive performance to sequence-based approaches while being trained on significantly fewer molecules.
arXiv Detail & Related papers (2023-06-21T12:44:52Z) - Protein Sequence and Structure Co-Design with Equivariant Translation [19.816174223173494]
Existing approaches generate both protein sequence and structure using either autoregressive models or diffusion models.
We propose a new approach capable of protein sequence and structure co-design, which iteratively translates both protein sequence and structure into the desired state.
Our model consists of a trigonometry-aware encoder that reasons geometrical constraints and interactions from context features.
All protein amino acids are updated in one shot in each translation step, which significantly accelerates the inference process.
arXiv Detail & Related papers (2022-10-17T06:00:12Z) - HelixFold-Single: MSA-free Protein Structure Prediction by Using Protein
Language Model as an Alternative [61.984700682903096]
HelixFold-Single is proposed to combine a large-scale protein language model with the superior geometric learning capability of AlphaFold2.
Our proposed method pre-trains a large-scale protein language model with thousands of millions of primary sequences.
We obtain an end-to-end differentiable model to predict the 3D coordinates of atoms from only the primary sequence.
arXiv Detail & Related papers (2022-07-28T07:30:33Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Pre-training Co-evolutionary Protein Representation via A Pairwise
Masked Language Model [93.9943278892735]
Key problem in protein sequence representation learning is to capture the co-evolutionary information reflected by the inter-residue co-variation in the sequences.
We propose a novel method to capture this information directly by pre-training via a dedicated language model, i.e., Pairwise Masked Language Model (PMLM)
Our result shows that the proposed method can effectively capture the interresidue correlations and improves the performance of contact prediction by up to 9% compared to the baseline.
arXiv Detail & Related papers (2021-10-29T04:01:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.