SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning
- URL: http://arxiv.org/abs/2506.09016v2
- Date: Tue, 08 Jul 2025 00:02:06 GMT
- Title: SPEED-RL: Faster Training of Reasoning Models via Online Curriculum Learning
- Authors: Ruiqi Zhang, Daman Arora, Song Mei, Andrea Zanette,
- Abstract summary: Training large language models with reinforcement learning (RL) against verifiable rewards significantly enhances their reasoning abilities.<n>We introduce Selective Prompting with Efficient Estimation of Difficulty (SPEED), an adaptive online RL curriculum that selectively chooses training examples of intermediate difficulty to maximize learning efficiency.<n> Empirically, our efficient implementation leads to 2x to 6x faster training without degrading accuracy, requires no manual tuning, and integrates seamlessly into standard RL algorithms.
- Score: 30.90778400005588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training large language models with reinforcement learning (RL) against verifiable rewards significantly enhances their reasoning abilities, yet remains computationally expensive due to inefficient uniform prompt sampling. We introduce Selective Prompting with Efficient Estimation of Difficulty (SPEED), an adaptive online RL curriculum that selectively chooses training examples of intermediate difficulty to maximize learning efficiency. Theoretically, we establish that intermediate-difficulty prompts improve the gradient estimator's signal-to-noise ratio, accelerating convergence. Empirically, our efficient implementation leads to 2x to 6x faster training without degrading accuracy, requires no manual tuning, and integrates seamlessly into standard RL algorithms.
Related papers
- Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle [53.239242017802056]
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM)<n>However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing and Rollout Silencing.<n>We propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition.
arXiv Detail & Related papers (2025-08-07T17:53:47Z) - Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models? [62.579951798437115]
This work investigates iterative approximate evaluation for arbitrary prompts.<n>It introduces Model Predictive Prompt Selection (MoPPS), a Bayesian risk-predictive framework.<n>MoPPS reliably predicts prompt difficulty and accelerates training with significantly reduced rollouts.
arXiv Detail & Related papers (2025-07-07T03:20:52Z) - Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-lite is a Mixture-of-Experts (MoE)-based large language model optimized via reinforcement learning (RL)<n>Our approach matches the performance of state-of-the-art (SOTA) small-scale reasoning models on challenging benchmarks.
arXiv Detail & Related papers (2025-06-17T17:12:34Z) - AdaLRS: Loss-Guided Adaptive Learning Rate Search for Efficient Foundation Model Pretraining [12.630306478872043]
We propose textbfAdaLRS, a plug-in-and-play adaptive learning rate search algorithm that conducts online optimal learning rate search.<n>Experiments show that AdaLRS adjusts suboptimal learning rates to the neighborhood of optimum with marked efficiency and effectiveness.
arXiv Detail & Related papers (2025-06-16T09:14:01Z) - Curriculum Reinforcement Learning from Easy to Hard Tasks Improves LLM Reasoning [52.32193550674408]
We aim to improve the reasoning capabilities of language models via reinforcement learning (RL)<n>We propose to schedule tasks from easy to hard (E2H), allowing LLMs to build reasoning skills gradually.<n>E2H Reasoner significantly improves the reasoning ability of small LLMs (1.5B to 3B)
arXiv Detail & Related papers (2025-06-07T02:41:54Z) - SuperRL: Reinforcement Learning with Supervision to Boost Language Model Reasoning [42.54530036364341]
SuperRL is a unified training framework that adaptively incorporates offline supervision into reinforcement learning.<n>SuperRL consistently outperforms standard reinforcement learning by improving sample efficiency, generalization, and robustness under sparse rewards.
arXiv Detail & Related papers (2025-06-01T17:43:54Z) - SPEQ: Offline Stabilization Phases for Efficient Q-Learning in High Update-To-Data Ratio Reinforcement Learning [51.10866035483686]
High update-to-data (UTD) ratio algorithms in reinforcement learning (RL) improve sample efficiency but incur high computational costs, limiting real-world scalability.<n>We propose Offline Stabilization Phases for Efficient Q-Learning (SPEQ), an RL algorithm that combines low-UTD online training with periodic offline stabilization phases.<n>During these phases, Q-functions are fine-tuned with high UTD ratios on a fixed replay buffer, reducing redundant updates on suboptimal data.
arXiv Detail & Related papers (2025-01-15T09:04:19Z) - Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models [11.624678008637623]
We propose separating generation and learning in RLHF.<n>Online DPO is found to be most robust to off-policy data.<n>Asynchronous training relies on an underexplored regime, online but off-policy RLHF.
arXiv Detail & Related papers (2024-10-23T19:59:50Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Digital Twin Assisted Deep Reinforcement Learning for Online Admission
Control in Sliced Network [19.152875040151976]
We propose a digital twin (DT) accelerated DRL solution to address this issue.
A neural network-based DT is established with a customized output layer for queuing systems, trained through supervised learning, and then employed to assist the training phase of the DRL model.
Extensive simulations show that the DT-accelerated DRL improves resource utilization by over 40% compared to the directly trained state-of-the-art dueling deep Q-learning model.
arXiv Detail & Related papers (2023-10-07T09:09:19Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.