e3: Learning to Explore Enables Extrapolation of Test-Time Compute for LLMs
- URL: http://arxiv.org/abs/2506.09026v2
- Date: Fri, 13 Jun 2025 17:44:03 GMT
- Title: e3: Learning to Explore Enables Extrapolation of Test-Time Compute for LLMs
- Authors: Amrith Setlur, Matthew Y. R. Yang, Charlie Snell, Jeremy Greer, Ian Wu, Virginia Smith, Max Simchowitz, Aviral Kumar,
- Abstract summary: We show that most existing reasoning models do not extrapolate well.<n>Our recipe e3 produces the best known 1.7B model according to AIME'25 and HMMT'25 scores.<n>Our e3-1.7B model not only attains high pass@1 scores, but also improves pass@k over the base model.
- Score: 49.01449646799905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Test-time scaling offers a promising path to improve LLM reasoning by utilizing more compute at inference time; however, the true promise of this paradigm lies in extrapolation (i.e., improvement in performance on hard problems as LLMs keep "thinking" for longer, beyond the maximum token budget they were trained on). Surprisingly, we find that most existing reasoning models do not extrapolate well. We show that one way to enable extrapolation is by training the LLM to perform in-context exploration: training the LLM to effectively spend its test time budget by chaining operations (such as generation, verification, refinement, etc.), or testing multiple hypotheses before it commits to an answer. To enable in-context exploration, we identify three key ingredients as part of our recipe e3: (1) chaining skills that the base LLM has asymmetric competence in, e.g., chaining verification (easy) with generation (hard), as a way to implement in-context search; (2) leveraging "negative" gradients from incorrect traces to amplify exploration during RL, resulting in longer search traces that chains additional asymmetries; and (3) coupling task difficulty with training token budget during training via a specifically-designed curriculum to structure in-context exploration. Our recipe e3 produces the best known 1.7B model according to AIME'25 and HMMT'25 scores, and extrapolates to 2x the training token budget. Our e3-1.7B model not only attains high pass@1 scores, but also improves pass@k over the base model.
Related papers
- Curriculum Reinforcement Learning from Easy to Hard Tasks Improves LLM Reasoning [52.32193550674408]
We aim to improve the reasoning capabilities of language models via reinforcement learning (RL)<n>We propose to schedule tasks from easy to hard (E2H), allowing LLMs to build reasoning skills gradually.<n>E2H Reasoner significantly improves the reasoning ability of small LLMs (1.5B to 3B)
arXiv Detail & Related papers (2025-06-07T02:41:54Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.<n>Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - On the Emergence of Thinking in LLMs I: Searching for the Right Intuition [34.32871896067864]
We propose a post-training framework called Reinforcement Learning via Self-Play (RLSP)<n> RLSP involves three steps: supervised fine-tuning with human or synthetic demonstrations of the reasoning process, using an exploration reward signal to encourage diverse and efficient reasoning behaviors, and RL training with an outcome verifier to ensure correctness while preventing reward hacking.<n> Empirical studies in the math domain show that RLSP improves reasoning.
arXiv Detail & Related papers (2025-02-10T18:52:04Z) - VinePPO: Refining Credit Assignment in RL Training of LLMs [66.80143024475635]
We propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates.<n>Our method consistently outperforms PPO and other baselines across MATH and GSM8K datasets in less wall-clock time.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.