論文の概要: SILK: Smooth InterpoLation frameworK for motion in-betweening A Simplified Computational Approach
- arxiv url: http://arxiv.org/abs/2506.09075v1
- Date: Mon, 09 Jun 2025 19:26:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:01.644967
- Title: SILK: Smooth InterpoLation frameworK for motion in-betweening A Simplified Computational Approach
- Title(参考訳): SILK: Smooth Interpolation frameworKによる簡易計算法
- Authors: Elly Akhoundi, Hung Yu Ling, Anup Anand Deshmukh, Judith Butepage,
- Abstract要約: 動きの切り替えはアニメーターにとって重要なツールであり、ポーズごとにポーズレベルの詳細を制御できる。
最近の動きの機械学習ソリューションは、複雑なモデル、スケルトン対応アーキテクチャ、あるいは複数のモジュールとトレーニングステップを必要とする。
本研究では,トランスフォーマーをベースとした単一エンコーダを用いて,現実的な動きを合成するシンプルなフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.7812314225208412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motion in-betweening is a crucial tool for animators, enabling intricate control over pose-level details in each keyframe. Recent machine learning solutions for motion in-betweening rely on complex models, incorporating skeleton-aware architectures or requiring multiple modules and training steps. In this work, we introduce a simple yet effective Transformer-based framework, employing a single Transformer encoder to synthesize realistic motions for motion in-betweening tasks. We find that data modeling choices play a significant role in improving in-betweening performance. Among others, we show that increasing data volume can yield equivalent or improved motion transitions, that the choice of pose representation is vital for achieving high-quality results, and that incorporating velocity input features enhances animation performance. These findings challenge the assumption that model complexity is the primary determinant of animation quality and provide insights into a more data-centric approach to motion interpolation. Additional videos and supplementary material are available at https://silk-paper.github.io.
- Abstract(参考訳): 動きの切り替えはアニメーターにとって重要なツールであり、各キーフレーム内のポーズレベルの詳細を複雑に制御できる。
最近の動きの機械学習ソリューションは複雑なモデルに依存しており、スケルトン対応アーキテクチャを組み込んだり、複数のモジュールやトレーニングステップを必要としている。
本研究では,1つのトランスフォーマーエンコーダを用いて,動作中の現実的な動作を合成する,シンプルで効果的なトランスフォーマーベースのフレームワークを提案する。
私たちは、データモデリングの選択が、パフォーマンスの向上に重要な役割を果たすことに気付きました。
中でも,データ量の増加が動き遷移の等価性や改善をもたらすこと,ポーズ表現の選択が高品質な結果の達成に不可欠であること,ベロシティ入力機能の導入によりアニメーション性能が向上すること,などが示されている。
これらの結果は、モデル複雑性がアニメーションの品質の主要な決定要因であるという仮定に挑戦し、モーション補間に対するよりデータ中心のアプローチに関する洞察を提供する。
追加のビデオと補足資料はhttps://silk-paper.github.io.comで公開されている。
関連論文リスト
- AnyMoLe: Any Character Motion In-betweening Leveraging Video Diffusion Models [5.224806515926022]
外部データを持たない任意の文字に対するフレーム間の動きを生成する新しい手法であるAnyMoLeを導入する。
本手法では,文脈理解を高めるために2段階のフレーム生成プロセスを用いる。
論文 参考訳(メタデータ) (2025-03-11T13:28:59Z) - Instance-Level Moving Object Segmentation from a Single Image with Events [84.12761042512452]
移動対象セグメンテーションは、複数の移動対象を含む動的なシーンを理解する上で重要な役割を果たす。
従来の手法では、物体の画素変位がカメラの動きや物体の動きによって引き起こされるかどうかを区別することが困難であった。
近年の進歩は、従来の画像の不適切な動作モデリング機能に対抗するために、新しいイベントカメラの動作感度を利用する。
補完的なテクスチャとモーションキューを統合した,最初のインスタンスレベルの移動オブジェクトセグメンテーションフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-18T15:56:46Z) - Motion-Aware Generative Frame Interpolation [23.380470636851022]
フローベースのフレーム法は、推定中間フローを通しての運動安定性を保証するが、複雑な動き領域で深刻なアーティファクトを導入することが多い。
大規模な事前学習ビデオ生成モデルによって強化された最近の生成的アプローチは、複雑なシーンの処理において有望であることを示している。
本研究では、中間フロー誘導と生成能力を相乗化して忠実度を高める動き認識生成フレーム(MoG)を提案する。
論文 参考訳(メタデータ) (2025-01-07T11:03:43Z) - Thin-Plate Spline-based Interpolation for Animation Line Inbetweening [54.69811179222127]
チャンファー距離(CD: Chamfer Distance)は、一般に間欠的な性能を評価するために用いられる。
薄板スプライン変換を応用したアニメーションラインインテタイニングの簡易かつ効果的な手法を提案する。
提案手法は, 流動性を高めた高品質な結果を提供することにより, 既存の手法よりも優れる。
論文 参考訳(メタデータ) (2024-08-17T08:05:31Z) - Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics [67.97235923372035]
本稿では,対話型ビデオ生成モデルであるPuppet-Masterについて紹介する。
テスト時には、ひとつのイメージと粗い動き軌跡が与えられた場合、Puppet-Masterは、与えられたドラッグ操作に忠実な現実的な部分レベルの動きを描写したビデオを合成することができる。
論文 参考訳(メタデータ) (2024-08-08T17:59:38Z) - Render In-between: Motion Guided Video Synthesis for Action
Interpolation [53.43607872972194]
本研究では、リアルな人間の動きと外観を生成できる動き誘導型フレームアップサンプリングフレームワークを提案する。
大規模モーションキャプチャーデータセットを活用することにより、フレーム間の非線形骨格運動を推定するために、新しいモーションモデルが訓練される。
私たちのパイプラインでは、低フレームレートのビデオと不自由な人間のモーションデータしか必要としませんが、トレーニングには高フレームレートのビデオは必要ありません。
論文 参考訳(メタデータ) (2021-11-01T15:32:51Z) - EAN: Event Adaptive Network for Enhanced Action Recognition [66.81780707955852]
本稿では,映像コンテンツの動的性質を調査するための統合された行動認識フレームワークを提案する。
まず、局所的な手がかりを抽出する際に、動的スケールの時空間カーネルを生成し、多様な事象を適応的に適合させる。
第2に、これらのキューを正確にグローバルなビデオ表現に集約するために、トランスフォーマーによって選択されたいくつかの前景オブジェクト間のインタラクションのみをマイニングすることを提案する。
論文 参考訳(メタデータ) (2021-07-22T15:57:18Z) - Robust Motion In-betweening [17.473287573543065]
本稿では,3次元アニメーターのための新しいツールとして機能する,新しい頑健な遷移生成技術を提案する。
このシステムは、時間的にスパーサをアニメーションの制約として使用する高品質な動作を合成する。
私たちは、トレーニングされたモデルを使用して運用シナリオで相互運用を行う、カスタムのMotionBuilderプラグインを紹介します。
論文 参考訳(メタデータ) (2021-02-09T16:52:45Z) - Motion-Attentive Transition for Zero-Shot Video Object Segmentation [99.44383412488703]
ゼロショットオブジェクトセグメンテーションのためのモーション・アテンタティブ・トランジション・ネットワーク(MATNet)を提案する。
モーション・アテンティブ・トランジション (MAT) と呼ばれる非対称のアテンションブロックは、2ストリームエンコーダ内に設計されている。
このように、エンコーダは深く相互に作用し、物体の動きと外観の間の密な階層的な相互作用を可能にする。
論文 参考訳(メタデータ) (2020-03-09T16:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。