論文の概要: CUDA-LLM: LLMs Can Write Efficient CUDA Kernels
- arxiv url: http://arxiv.org/abs/2506.09092v1
- Date: Tue, 10 Jun 2025 10:51:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:01.690621
- Title: CUDA-LLM: LLMs Can Write Efficient CUDA Kernels
- Title(参考訳): CUDA-LLM: LLMは効率的なCUDAカーネルを書ける
- Authors: Wentao Chen, Jiace Zhu, Qi Fan, Yehan Ma, An Zou,
- Abstract要約: 大規模言語モデル(LLM)は汎用コード生成において強力な機能を示している。
我々は,textbfFeature SearchReinforcement (FSR) FSRという新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 9.287036563375617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated strong capabilities in general-purpose code generation. However, generating the code which is deeply hardware-specific, architecture-aware, and performance-critical, especially for massively parallel GPUs, remains a complex challenge. In this work, we explore the use of LLMs for the automated generation and optimization of CUDA programs, with the goal of producing high-performance GPU kernels that fully exploit the underlying hardware. To address this challenge, we propose a novel framework called \textbf{Feature Search and Reinforcement (FSR)}. FSR jointly optimizes compilation and functional correctness, as well as the runtime performance, which are validated through extensive and diverse test cases, and measured by actual kernel execution latency on the target GPU, respectively. This approach enables LLMs not only to generate syntactically and semantically correct CUDA code but also to iteratively refine it for efficiency, tailored to the characteristics of the GPU architecture. We evaluate FSR on representative CUDA kernels, covering AI workloads and computational intensive algorithms. Our results show that LLMs augmented with FSR consistently guarantee correctness rates. Meanwhile, the automatically generated kernels can outperform general human-written code by a factor of up to 179$\times$ in execution speeds. These findings highlight the potential of combining LLMs with performance reinforcement to automate GPU programming for hardware-specific, architecture-sensitive, and performance-critical applications.
- Abstract(参考訳): 大規模言語モデル(LLM)は汎用コード生成において強力な機能を示している。
しかしながら、特に大規模並列GPUにおいて、ハードウェア固有の、アーキテクチャに気付き、パフォーマンスにクリティカルなコードを生成することは、依然として複雑な課題である。
本研究では,CUDAプログラムの自動生成と最適化におけるLLMの利用について検討し,基盤となるハードウェアをフル活用した高性能GPUカーネルの実現を目標とする。
この課題に対処するため,新しいフレームワークである「textbf{Feature Search and Reinforcement (FSR)」を提案する。
FSRは、コンパイルと機能的正当性を共同で最適化し、幅広いテストケースと多様なテストケースを通じて検証され、それぞれターゲットGPU上での実際のカーネル実行レイテンシによって測定されるランタイムパフォーマンスを最適化する。
このアプローチにより、LLMは構文的かつ意味論的に正しいCUDAコードを生成するだけでなく、GPUアーキテクチャの特性に合わせて、効率よく反復的に改善できる。
我々は、AIワークロードと計算集約アルゴリズムをカバーする代表CUDAカーネル上でFSRを評価する。
以上の結果から,FSRで拡張したLDMは常に正当性を保証することが示唆された。
一方、自動生成されたカーネルは、実行速度で最大179$\times$の要素で、一般的な人書きコードより優れている。
これらの知見は、ハードウェア固有の、アーキテクチャに敏感で、パフォーマンスクリティカルなアプリケーションのためのGPUプログラミングを自動化するために、LCMとパフォーマンスの強化を組み合わせる可能性を浮き彫りにしている。
関連論文リスト
- NGPU-LM: GPU-Accelerated N-Gram Language Model for Context-Biasing in Greedy ASR Decoding [54.88765757043535]
この研究は、統計的なn-gram言語モデルのデータ構造を再考し、GPU最適化推論の高速かつ並列な操作を可能にする。
我々のアプローチは NGPU-LM と呼ばれ、7% 未満の計算オーバーヘッドを持つ全ての主要な ASR モデルに対して、カスタマイズ可能なgreedy decoding を導入している。
提案手法は,ビーム探索による顕著な遅延を回避しつつ,greedy と beam search の精度ギャップの50%以上を排除できる。
論文 参考訳(メタデータ) (2025-05-28T20:43:10Z) - Can Large Language Models Predict Parallel Code Performance? [1.5221392705893568]
本稿では,Large Language Models (LLM) がハードウェアに依存しないGPU性能予測に代替的なアプローチを提供するかどうかを考察する。
LLMはRooflineモデルについて強く理解しており、明示的なプロファイリングデータを備えた場合、100%の分類精度を達成する。
以上の結果から,より優れたデータセットと迅速な戦略により,LLMはHPCルーフライン解析および性能ポータビリティのための実用的なツールとなる可能性が示唆された。
論文 参考訳(メタデータ) (2025-05-06T21:41:20Z) - GPU Performance Portability needs Autotuning [0.0]
LLMは複雑さが増し、最先端のパフォーマンスを達成するには、アルゴリズム、ソフトウェア、ハードウェア間の密な共同設計が必要である。
ジャスト・イン・タイム(JIT)コンパイルとカーネルパラメータの自動チューニングの組み合わせを例に挙げる。
我々の結果は、GPUベンダー間のモデルポータビリティをアンロックするための有望なパスとして、オートチューニングを強調しています。
論文 参考訳(メタデータ) (2025-04-30T12:57:21Z) - gECC: A GPU-based high-throughput framework for Elliptic Curve Cryptography [15.39096542261856]
Elliptic Curve Cryptography (ECC)は、Rivest-Shamir-Adleman (RSA)のような従来の技術に匹敵するセキュリティを提供する暗号化手法である。
ECCは、楕円曲線(EC)操作に関連する大きな性能上のオーバーヘッドによって、いまだに妨げられている。
本稿では,GPUアーキテクチャ向けに最適化されたECCのための汎用フレームワークであるgECCを提案する。
論文 参考訳(メタデータ) (2024-12-22T01:50:50Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [19.167604927651073]
LLM(Large Language Models)の自動回帰デコーディングは、ハードウェアの性能に大きなオーバーヘッドをもたらす。
トレーニング可能なパラメータを0.0002$%しか必要とせず,A100-40GBのGPUをたった16時間で効率的にトレーニングできる並列プロンプトデコーディングを提案する。
我々のアプローチでは、最大2.49$times$ スピードアップを示し、最小のメモリオーバーヘッドは0.0004$%である。
論文 参考訳(メタデータ) (2024-05-28T22:19:30Z) - SIP: Autotuning GPU Native Schedules via Stochastic Instruction Perturbation [0.0]
大型言語モデル(LLM)はその出現以来、重要なワークロードとなっている。
また、数十億のパラメータを持ち、大量のデータで訓練されているため、計算コストも高い。
近年、LLMのトレーニングと推論のための専用カーネルが開発されているため、ハードウェアリソースは可能な限り十分に活用されている。
論文 参考訳(メタデータ) (2024-03-25T15:26:50Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - PolyDL: Polyhedral Optimizations for Creation of High Performance DL
primitives [55.79741270235602]
本稿では,Deep Learningプリミティブの高性能実装を自動的に生成するコンパイラアルゴリズムを提案する。
我々は多面体モデルを用いた新しいデータ再利用分析アルゴリズムを開発した。
また、このようなハイブリッドコンパイラとライブラリ使用の最小限のアプローチが、最先端のパフォーマンスをもたらすことを示す。
論文 参考訳(メタデータ) (2020-06-02T06:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。