論文の概要: The RSNA Lumbar Degenerative Imaging Spine Classification (LumbarDISC) Dataset
- arxiv url: http://arxiv.org/abs/2506.09162v1
- Date: Tue, 10 Jun 2025 18:23:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:01.859109
- Title: The RSNA Lumbar Degenerative Imaging Spine Classification (LumbarDISC) Dataset
- Title(参考訳): RSNA腰椎変性画像スピン分類(LumbarDISC)データセット
- Authors: Tyler J. Richards, Adam E. Flanders, Errol Colak, Luciano M. Prevedello, Robyn L. Ball, Felipe Kitamura, John Mongan, Maryam Vazirabad, Hui-Ming Lin, Anne Kendell, Thanat Kanthawang, Salita Angkurawaranon, Emre Altinmakas, Hakan Dogan, Paulo Eduardo de Aguiar Kuriki, Arjuna Somasundaram, Christopher Ruston, Deniz Bulja, Naida Spahovic, Jennifer Sommer, Sirui Jiang, Eduardo Moreno Judice de Mattos Farina, Eduardo Caminha Nunes, Michael Brassil, Megan McNamara, Johanna Ortiz, Jacob Peoples, Vinson L. Uytana, Anthony Kam, Venkata N. S. Dola, Daniel Murphy, David Vu, Dataset Contributor Group, Dataset Annotator Group, Competition Data Notebook Group, Jason F. Talbott,
- Abstract要約: このデータセットには、6か国と5大陸の8つの機関から8,593のイメージシリーズを持つ2,697人の患者が含まれている。
このデータセットは、RSNA 2024 ランバースピン縮退分類競技のために作成された。
脊柱管, 関節下凹部, 神経性前頭狭窄の度合いは, 腰椎椎間板の各位で評価された。
- 参考スコア(独自算出の注目度): 1.1833437820483894
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Radiological Society of North America (RSNA) Lumbar Degenerative Imaging Spine Classification (LumbarDISC) dataset is the largest publicly available dataset of adult MRI lumbar spine examinations annotated for degenerative changes. The dataset includes 2,697 patients with a total of 8,593 image series from 8 institutions across 6 countries and 5 continents. The dataset is available for free for non-commercial use via Kaggle and RSNA Medical Imaging Resource of AI (MIRA). The dataset was created for the RSNA 2024 Lumbar Spine Degenerative Classification competition where competitors developed deep learning models to grade degenerative changes in the lumbar spine. The degree of spinal canal, subarticular recess, and neural foraminal stenosis was graded at each intervertebral disc level in the lumbar spine. The images were annotated by expert volunteer neuroradiologists and musculoskeletal radiologists from the RSNA, American Society of Neuroradiology, and the American Society of Spine Radiology. This dataset aims to facilitate research and development in machine learning and lumbar spine imaging to lead to improved patient care and clinical efficiency.
- Abstract(参考訳): The Radiological Society of North America (RSNA) Lumbar Degenerative Imaging Spine Classification (LumbarDISC) データセットは、変性変化を注釈した成人MRI腰椎検診のデータセットとして最大である。
このデータセットには、6か国と5大陸の8つの機関から合計8,593のイメージシリーズを持つ2,697人の患者が含まれている。
このデータセットは、KaggleとRSNA Medical Imaging Resource of AI (MIRA)を介して、非商用使用のために無償で利用できる。
データセットはRSNA 2024 腰椎椎変性分類競技のために作成され、競技者は腰椎の変性変化をグレードするディープラーニングモデルを開発した。
脊柱管, 関節下凹部, 神経性前頭狭窄の度合いは, 腰椎椎間板の各位で評価された。
この画像は、RSNA、American Society of Neuroradiology、American Society of Spine Radiologyのボランティア神経放射線学者と筋骨格放射線学者によって注釈された。
このデータセットは、機械学習と腰椎イメージングの研究と開発を促進し、患者のケアと臨床効率を改善することを目的としている。
関連論文リスト
- SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
公開されている注釈付きデータセットの欠如は、堅牢で機械学習駆動のセグメンテーションアルゴリズムの開発を妨げている。
SMILE-UHURAチャレンジは、7T MRIで取得したTime-of-Flightアンジオグラフィーの注釈付きデータセットを提供することで、公開されている注釈付きデータセットのギャップに対処する。
Diceスコアは、それぞれのデータセットで0.838 $pm$0.066と0.716 $pm$ 0.125まで到達し、平均パフォーマンスは0.804 $pm$ 0.15までになった。
論文 参考訳(メタデータ) (2024-11-14T17:06:00Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Predicting recovery following stroke: deep learning, multimodal data and
feature selection using explainable AI [3.797471910783104]
主な課題は、ニューロイメージングデータの非常に高次元性と、学習に利用可能なデータセットの比較的小さなサイズである。
我々は、MRIから抽出された関心領域を組み合わせた画像に対して、畳み込みニューラルネットワーク(CNN)を訓練する新しいアプローチを導入する。
病院のスキャナーの画像を用いて、現在のモデルがどのように改善され、さらに高いレベルの精度が得られるかを提案する。
論文 参考訳(メタデータ) (2023-10-29T22:31:20Z) - Context-Aware Transformers For Spinal Cancer Detection and Radiological
Grading [70.04389979779195]
本稿では,脊椎分析に関わる医療画像問題に対するトランスフォーマーを用いた新しいモデルアーキテクチャを提案する。
MR画像におけるそのようなモデルの2つの応用について考察する: (a)脊椎転移の検出と脊椎骨折の関連状況と転移性脊髄圧迫。
画像中の脊椎のコンテキストを考慮することで,SCTは以前に公表したモデルと比較して,いくつかのグレーディングの精度を向上することを示す。
論文 参考訳(メタデータ) (2022-06-27T10:31:03Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - VinDr-SpineXR: A deep learning framework for spinal lesions detection
and classification from radiographs [0.812774532310979]
本研究の目的は,脊椎X線からの異常の分類と局所化を目的とした,深層学習に基づくフレームワーク VinDr-SpineXR の開発と評価である。
5000件の研究から得られた10,468個の脊椎X線画像からなる大規模なデータセットを構築した。
VinDr-SpineXRは、1000の研究から得られた2,078枚の画像で評価され、トレーニングセットとは分離されている。
論文 参考訳(メタデータ) (2021-06-24T11:45:44Z) - CTSpine1K: A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography [27.27657839726696]
CTSpine1Kと呼ばれる大規模な脊椎CTデータセットを導入する。
このデータセットは1,005CTボリュームを含み、11,100以上のラベル付き脊椎は異なる脊椎の状態に属している。
論文 参考訳(メタデータ) (2021-05-31T05:34:27Z) - Classification of Fracture and Normal Shoulder Bone X-Ray Images Using
Ensemble and Transfer Learning With Deep Learning Models Based on
Convolutional Neural Networks [0.0]
様々な理由で肩骨折が起こり、身体の他の関節よりも広く、より多様な動きの領域が生じる。
画像はX線(X線)、磁気共鳴画像(MRI)、CT(CT)デバイスを介して肩用のデジタルイメージング・通信(DICOM)フォーマットで生成される。
移動学習とアンサンブル学習を用いた畳み込みニューラルネットワーク(CNN)に基づく深層学習モデルを用いて,肩骨X線画像の分類と比較を行った。
論文 参考訳(メタデータ) (2021-01-31T19:20:04Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
脊椎MRIにおける脊椎の発見と同定のための新しい畳み込み法を提案する。
これには学習ベクトル場を使用して、検出された脊椎の角を個別の脊椎にまとめる。
本手法の臨床的有用性を示すために, 腰部, 脊柱管内MRスキャンにおける側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側
論文 参考訳(メタデータ) (2020-07-06T09:37:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。