FLoRIST: Singular Value Thresholding for Efficient and Accurate Federated Fine-Tuning of Large Language Models
- URL: http://arxiv.org/abs/2506.09199v1
- Date: Tue, 10 Jun 2025 19:36:36 GMT
- Title: FLoRIST: Singular Value Thresholding for Efficient and Accurate Federated Fine-Tuning of Large Language Models
- Authors: Hariharan Ramesh, Jyotikrishna Dass,
- Abstract summary: FLoRIST is a federated fine-tuning framework that achieves mathematically accurate aggregation without incurring high communication or computational overhead.<n>We introduce tunable singular value thresholding for server-side optimal rank selection to construct a pair of global low-rank adapters shared by all clients.
- Score: 2.555222031881788
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating Low-Rank Adaptation (LoRA) into federated learning offers a promising solution for parameter-efficient fine-tuning of Large Language Models (LLMs) without sharing local data. However, several methods designed for federated LoRA present significant challenges in balancing communication efficiency, model accuracy, and computational cost, particularly among heterogeneous clients. These methods either rely on simplistic averaging of local adapters, which introduces aggregation noise, require transmitting large stacked local adapters, leading to poor communication efficiency, or necessitate reconstructing memory-dense global weight-update matrix and performing computationally expensive decomposition to design client-specific low-rank adapters. In this work, we propose FLoRIST, a federated fine-tuning framework that achieves mathematically accurate aggregation without incurring high communication or computational overhead. Instead of constructing the full global weight-update matrix at the server, FLoRIST employs an efficient decomposition pipeline by performing singular value decomposition on stacked local adapters separately. This approach operates within a compact intermediate space to represent the accumulated information from local LoRAs. We introduce tunable singular value thresholding for server-side optimal rank selection to construct a pair of global low-rank adapters shared by all clients. Extensive empirical evaluations across multiple datasets and LLMs demonstrate that FLoRIST consistently strikes the best balance between superior communication efficiency and competitive performance in both homogeneous and heterogeneous setups.
Related papers
- AFLoRA: Adaptive Federated Fine-Tuning of Large Language Models with Resource-Aware Low-Rank Adaption [3.805501490912696]
Federated fine-tuning has emerged as a promising approach to adapt foundation models to downstream tasks using decentralized data.<n>We propose AFLoRA, an adaptive and lightweight federated fine-tuning framework for Large Language Models.
arXiv Detail & Related papers (2025-05-30T16:35:32Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.<n>Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - Modality Alignment Meets Federated Broadcasting [9.752555511824593]
Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data.
This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices.
arXiv Detail & Related papers (2024-11-24T13:30:03Z) - LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning.<n>Low-Rank Adaptation (LoRA) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters.<n>LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2024-11-22T14:19:01Z) - HAFLQ: Heterogeneous Adaptive Federated LoRA Fine-tuned LLM with Quantization [55.972018549438964]
Federated fine-tuning of pre-trained Large Language Models (LLMs) enables task-specific adaptation across diverse datasets while preserving privacy.<n>We propose HAFLQ (Heterogeneous Adaptive Federated Low-Rank Adaptation Fine-tuned LLM with Quantization), a novel framework for efficient and scalable fine-tuning of LLMs in heterogeneous environments.<n> Experimental results on the text classification task demonstrate that HAFLQ reduces memory usage by 31%, lowers communication cost by 49%, improves accuracy by 50%, and achieves faster convergence compared to the baseline method.
arXiv Detail & Related papers (2024-11-10T19:59:54Z) - FedEx-LoRA: Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models [5.1613368481802455]
Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of foundation models.<n>We propose Federated Exact LoRA, or FedEx-LoRA, which adds a residual error term to the pretrained frozen weight matrix.<n>Our approach achieves exact updates with minimal computational and communication overhead, preserving LoRA's efficiency.
arXiv Detail & Related papers (2024-10-12T08:22:44Z) - Ferret: Federated Full-Parameter Tuning at Scale for Large Language Models [54.02863371927658]
Large Language Models (LLMs) have become indispensable in numerous real-world applications.<n>Ferret is the first first-order method with shared randomness to enable scalable full- parameter tuning of LLMs.<n>Ferret achieves high computational efficiency, reduced communication overhead, and fast convergence.
arXiv Detail & Related papers (2024-09-10T07:28:13Z) - Towards Federated Low-Rank Adaptation of Language Models with Rank Heterogeneity [12.515874333424929]
We observe that heterogeneous ranks among clients lead to unstable performance.<n>Our analysis attributes this instability to the conventional zero-padding aggregation strategy.<n>We propose a replication-based padding strategy that better retains valuable information from clients with high-quality data.
arXiv Detail & Related papers (2024-06-25T11:49:33Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms [29.636944156801327]
Multiple clients collaboratively train one global model without sharing their semantic parsing data.
Lorar adjusts each client's contribution to the global model update based on its training loss reduction during each round.
Clients with smaller datasets enjoy larger performance gains.
arXiv Detail & Related papers (2023-05-26T19:25:49Z) - Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape [59.841889495864386]
In federated learning (FL), a cluster of local clients are chaired under the coordination of a global server.
Clients are prone to overfit into their own optima, which extremely deviates from the global objective.
ttfamily FedSMOO adopts a dynamic regularizer to guarantee the local optima towards the global objective.
Our theoretical analysis indicates that ttfamily FedSMOO achieves fast $mathcalO (1/T)$ convergence rate with low bound generalization.
arXiv Detail & Related papers (2023-05-19T10:47:44Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
Federated learning allows multiple clients to collaboratively learn a globally shared model.
We propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side.
We achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.
arXiv Detail & Related papers (2021-02-03T08:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.