A Topological Improvement of the Overall Performance of Sparse Evolutionary Training: Motif-Based Structural Optimization of Sparse MLPs Project
- URL: http://arxiv.org/abs/2506.09204v1
- Date: Tue, 10 Jun 2025 19:49:07 GMT
- Title: A Topological Improvement of the Overall Performance of Sparse Evolutionary Training: Motif-Based Structural Optimization of Sparse MLPs Project
- Authors: Xiaotian Chen, Hongyun Liu, Seyed Sahand Mohammadi Ziabari,
- Abstract summary: This research investigates whether the structural optimization of Sparse Evolutionary Training applied to Multi-layer Perceptrons (SET-MLP) can enhance performance.
- Score: 2.1899189033259305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks (DNNs) have been proven to be exceptionally effective and have been applied across diverse domains within deep learning. However, as DNN models increase in complexity, the demand for reduced computational costs and memory overheads has become increasingly urgent. Sparsity has emerged as a leading approach in this area. The robustness of sparse Multi-layer Perceptrons (MLPs) for supervised feature selection, along with the application of Sparse Evolutionary Training (SET), illustrates the feasibility of reducing computational costs without compromising accuracy. Moreover, it is believed that the SET algorithm can still be improved through a structural optimization method called motif-based optimization, with potential efficiency gains exceeding 40% and a performance decline of under 4%. This research investigates whether the structural optimization of Sparse Evolutionary Training applied to Multi-layer Perceptrons (SET-MLP) can enhance performance and to what extent this improvement can be achieved.
Related papers
- Optimizers Qualitatively Alter Solutions And We Should Leverage This [62.662640460717476]
Deep Neural Networks (DNNs) can not guarantee convergence to a unique global minimum of the loss when using only local information, such as SGD.<n>We argue that the community should aim at understanding the biases of already existing methods, as well as aim to build new DNNs with the explicit intent of inducing certain properties of the solution.
arXiv Detail & Related papers (2025-07-16T13:33:31Z) - Large Language Model Enhanced Particle Swarm Optimization for Hyperparameter Tuning for Deep Learning Models [2.3949320404005436]
Particle Swarm Optimization and Large Language Models (LLMs) have been individually applied in optimization and deep learning.<n>Our work addresses this gap by integrating LLMs into PSO to reduce model evaluations and improve convergence.<n>Our method speeds up search space exploration by substituting underperforming particle placements with best suggestions.
arXiv Detail & Related papers (2025-04-19T00:54:59Z) - Architect Your Landscape Approach (AYLA) for Optimizations in Deep Learning [0.0]
Gradient Descent (DSG) and its variants, such as ADAM, are foundational to deep learning optimization.<n>This paper introduces AYLA, a novel optimization technique that enhances adaptability and efficiency rates.
arXiv Detail & Related papers (2025-04-02T16:31:39Z) - TRAWL: Tensor Reduced and Approximated Weights for Large Language Models [11.064868044313855]
We introduce TRAWL (Tensor Reduced and Approximated Weights for Large Language Models), a technique that applies tensor decomposition across multiple weight matrices to effectively denoise LLMs by capturing global structural patterns.<n>Our experiments show that TRAWL improves model performance by up to 16% over baseline models on benchmark datasets, without requiring additional data, training, or fine-tuning.
arXiv Detail & Related papers (2024-06-25T04:01:32Z) - Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
This paper adopts a novel approach to deep learning optimization, focusing on gradient descent (SGD) and its variants.
We show that SGD and its variants demonstrate performance on par with flat-minimas like SAM, albeit with half the gradient evaluations.
Our study uncovers several key findings regarding the relationship between training loss and hold-out accuracy, as well as the comparable performance of SGD and noise-enabled variants.
arXiv Detail & Related papers (2024-03-01T14:55:22Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Structure-Enhanced Deep Reinforcement Learning for Optimal Transmission
Scheduling [47.29474858956844]
We develop a structure-enhanced deep reinforcement learning framework for optimal scheduling of a multi-sensor remote estimation system.
In particular, we propose a structure-enhanced action selection method, which tends to select actions that obey the policy structure.
Our numerical results show that the proposed structure-enhanced DRL algorithms can save the training time by 50% and reduce the remote estimation MSE by 10% to 25%.
arXiv Detail & Related papers (2022-11-20T00:13:35Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Sample-efficient Iterative Lower Bound Optimization of Deep Reactive
Policies for Planning in Continuous MDPs [27.41101006357176]
In this work, we take a minorization-maximization perspective to iteratively optimize the.
w.r.t. a locally tight lower-bounded objective.
This novel formulation of learning as iterative lower bound optimization (ILBO) is particularly appealing because (i) each step is structurally easier to optimize than the overall objective.
Empirical evaluation confirms that ILBO is significantly more sample-efficient than the state-of-the-art planner.
arXiv Detail & Related papers (2022-03-23T19:06:16Z) - DEBOSH: Deep Bayesian Shape Optimization [48.80431740983095]
We propose a novel uncertainty-based method tailored to shape optimization.
It enables effective BO and increases the quality of the resulting shapes beyond that of state-of-the-art approaches.
arXiv Detail & Related papers (2021-09-28T11:01:42Z) - A Differential Game Theoretic Neural Optimizer for Training Residual
Networks [29.82841891919951]
We propose a generalized Differential Dynamic Programming (DDP) neural architecture that accepts both residual connections and convolution layers.
The resulting optimal control representation admits a gameoretic perspective, in which training residual networks can be interpreted as cooperative trajectory optimization on state-augmented systems.
arXiv Detail & Related papers (2020-07-17T10:19:17Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.