Architect Your Landscape Approach (AYLA) for Optimizations in Deep Learning
- URL: http://arxiv.org/abs/2504.01875v1
- Date: Wed, 02 Apr 2025 16:31:39 GMT
- Title: Architect Your Landscape Approach (AYLA) for Optimizations in Deep Learning
- Authors: Ben Keslaki,
- Abstract summary: Gradient Descent (DSG) and its variants, such as ADAM, are foundational to deep learning optimization.<n>This paper introduces AYLA, a novel optimization technique that enhances adaptability and efficiency rates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic Gradient Descent (SGD) and its variants, such as ADAM, are foundational to deep learning optimization, adjusting model parameters using fixed or adaptive learning rates based on loss function gradients. However, these methods often face challenges in balancing adaptability and efficiency in non-convex, high-dimensional settings. This paper introduces AYLA, a novel optimization technique that enhances training dynamics through loss function transformations. By applying a tunable power-law transformation, AYLA preserves critical points while scaling loss values to amplify gradient sensitivity, accelerating convergence. We further propose a dynamic (effective) learning rate that adapts to the transformed loss, improving optimization efficiency. Empirical tests on finding minimum of a synthetic non-convex polynomial, a non-convex curve-fitting dataset, and digit classification (MNIST) demonstrate that AYLA surpasses SGD and ADAM in convergence speed and stability. This approach redefines the loss landscape for better optimization outcomes, offering a promising advancement for deep neural networks and can be applied to any optimization method and potentially improve the performance of it.
Related papers
- A Triple-Inertial Accelerated Alternating Optimization Method for Deep Learning Training [3.246129789918632]
gradient descent (SGD) algorithm has achieved remarkable success in training deep learning models.
alternating minimization (AM) methods have emerged as a promising alternative for model training.
We propose a novel Triple-Inertial Accelerated Alternating Minimization (TIAM) framework for neural network training.
arXiv Detail & Related papers (2025-03-11T14:42:17Z) - Revisiting the Initial Steps in Adaptive Gradient Descent Optimization [6.468625143772815]
Adaptive gradient optimization methods, such as Adam, are prevalent in training deep neural networks across diverse machine learning tasks.
These methods often suffer from suboptimal generalization compared to descent gradient (SGD) and exhibit instability.
We introduce simple yet effective solutions: initializing the second-order moment estimation with non-zero values.
arXiv Detail & Related papers (2024-12-03T04:28:14Z) - WarpAdam: A new Adam optimizer based on Meta-Learning approach [0.0]
This study introduces an innovative approach that merges the 'warped gradient descend' concept from Meta Learning with the Adam.
By introducing a learnable distortion matrix P within the adaptation matrix P, we aim to enhance the model's capability across diverse data distributions.
Our research showcases potential of this novel approach through theoretical insights and empirical evaluations.
arXiv Detail & Related papers (2024-09-06T12:51:10Z) - Adaptive Friction in Deep Learning: Enhancing Optimizers with Sigmoid and Tanh Function [0.0]
We introduce sigSignGrad and tanhSignGrad, two novel gradients that integrate adaptive friction coefficients.
Our theoretical analysis demonstrates the wide-ranging adjustment capability of the friction coefficient S.
Experiments on CIFAR-10, Mini-Image-Net using ResNet50 and ViT architectures confirm the superior performance our proposeds.
arXiv Detail & Related papers (2024-08-07T03:20:46Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - Signal Processing Meets SGD: From Momentum to Filter [6.751292200515355]
In deep learning, gradient descent (SGD) and its momentum-based variants are widely used for optimization.<n>In this paper, we analyze gradient behavior through a signal processing lens, isolating key factors that influence updates.<n>We introduce a novel method SGDF based on Wiener Filter principles, which derives an optimal time-varying gain to refine updates.
arXiv Detail & Related papers (2023-11-06T01:41:46Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
We introduce low-memory optimization with adaptive learning rate (AdaLomo) for large language models.
AdaLomo results on par with AdamW, while significantly reducing memory requirements, thereby lowering the hardware barrier to training large language models.
arXiv Detail & Related papers (2023-10-16T09:04:28Z) - ELRA: Exponential learning rate adaption gradient descent optimization
method [83.88591755871734]
We present a novel, fast (exponential rate), ab initio (hyper-free) gradient based adaption.
The main idea of the method is to adapt the $alpha by situational awareness.
It can be applied to problems of any dimensions n and scales only linearly.
arXiv Detail & Related papers (2023-09-12T14:36:13Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - An adaptive stochastic gradient-free approach for high-dimensional
blackbox optimization [0.0]
We propose an adaptive gradient-free (ASGF) approach for high-dimensional non-smoothing problems.
We illustrate the performance of this method on benchmark global problems and learning tasks.
arXiv Detail & Related papers (2020-06-18T22:47:58Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.