SoK: Machine Unlearning for Large Language Models
- URL: http://arxiv.org/abs/2506.09227v1
- Date: Tue, 10 Jun 2025 20:30:39 GMT
- Title: SoK: Machine Unlearning for Large Language Models
- Authors: Jie Ren, Yue Xing, Yingqian Cui, Charu C. Aggarwal, Hui Liu,
- Abstract summary: Large language model (LLM) unlearning has become a critical topic in machine learning.<n>We propose a new taxonomy based on the intention of unlearning.
- Score: 14.88062383081161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model (LLM) unlearning has become a critical topic in machine learning, aiming to eliminate the influence of specific training data or knowledge without retraining the model from scratch. A variety of techniques have been proposed, including Gradient Ascent, model editing, and re-steering hidden representations. While existing surveys often organize these methods by their technical characteristics, such classifications tend to overlook a more fundamental dimension: the underlying intention of unlearning--whether it seeks to truly remove internal knowledge or merely suppress its behavioral effects. In this SoK paper, we propose a new taxonomy based on this intention-oriented perspective. Building on this taxonomy, we make three key contributions. First, we revisit recent findings suggesting that many removal methods may functionally behave like suppression, and explore whether true removal is necessary or achievable. Second, we survey existing evaluation strategies, identify limitations in current metrics and benchmarks, and suggest directions for developing more reliable and intention-aligned evaluations. Third, we highlight practical challenges--such as scalability and support for sequential unlearning--that currently hinder the broader deployment of unlearning methods. In summary, this work offers a comprehensive framework for understanding and advancing unlearning in generative AI, aiming to support future research and guide policy decisions around data removal and privacy.
Related papers
- Does Machine Unlearning Truly Remove Model Knowledge? A Framework for Auditing Unlearning in LLMs [58.24692529185971]
We introduce a comprehensive auditing framework for unlearning evaluation comprising three benchmark datasets, six unlearning algorithms, and five prompt-based auditing methods.<n>We evaluate the effectiveness and robustness of different unlearning strategies.
arXiv Detail & Related papers (2025-05-29T09:19:07Z) - Are We Truly Forgetting? A Critical Re-examination of Machine Unlearning Evaluation Protocols [14.961054239793356]
We introduce a rigorous unlearning evaluation setup, in which forgetting classes exhibit semantic similarity to downstream task classes.<n>We hope our benchmark serves as a standardized protocol for evaluating unlearning algorithms under realistic conditions.
arXiv Detail & Related papers (2025-03-10T07:11:34Z) - How to Probe: Simple Yet Effective Techniques for Improving Post-hoc Explanations [69.72654127617058]
Post-hoc importance attribution methods are a popular tool for "explaining" Deep Neural Networks (DNNs)<n>In this work we bring forward empirical evidence that challenges this very notion.<n>We discover a strong dependency on and demonstrate that the training details of a pre-trained model's classification layer play a crucial role.
arXiv Detail & Related papers (2025-03-01T22:25:11Z) - A Comprehensive Survey of Machine Unlearning Techniques for Large Language Models [35.893819613585315]
This study investigates the machine unlearning techniques within the context of large language models (LLMs)<n>LLMs unlearning offers a principled approach to removing the influence of undesirable data from LLMs.<n>Despite growing research interest, there is no comprehensive survey that systematically organizes existing work and distills key insights.
arXiv Detail & Related papers (2025-02-22T12:46:14Z) - RESTOR: Knowledge Recovery in Machine Unlearning [71.75834077528305]
Large language models trained on web-scale corpora can contain private or sensitive information.<n>Several machine unlearning algorithms have been proposed to eliminate the effect of such datapoints.<n>We propose the RESTOR framework for machine unlearning evaluation.
arXiv Detail & Related papers (2024-10-31T20:54:35Z) - A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns.<n>We discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches.
arXiv Detail & Related papers (2024-10-10T16:56:05Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
We introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components.<n>A Knowledge Unlearning Induction module targets specific knowledge for removal using an unlearning loss.<n>A Contrastive Learning Enhancement module preserves the model's expressive capabilities against the pure unlearning goal.<n>An Iterative Unlearning Refinement module dynamically adjusts the unlearning process through ongoing evaluation and updates.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Machine Unlearning for Traditional Models and Large Language Models: A Short Survey [11.539080008361662]
Machine unlearning aims to delete data and reduce its impact on models according to user requests.
This paper categorizes and investigates unlearning on both traditional models and Large Language Models (LLMs)
arXiv Detail & Related papers (2024-04-01T16:08:18Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Exploring Federated Unlearning: Review, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.<n>This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.<n>We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Vertical Machine Unlearning: Selectively Removing Sensitive Information
From Latent Feature Space [21.8933559159369]
We investigate a vertical unlearning mode, aiming at removing only sensitive information from latent feature space.
We introduce intuitive and formal definitions for this unlearning and show its relationship with existing horizontal unlearning.
We propose an approximation with an upper bound to estimate it, with rigorous theoretical analysis.
arXiv Detail & Related papers (2022-02-27T05:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.