Machine Unlearning for Traditional Models and Large Language Models: A Short Survey
- URL: http://arxiv.org/abs/2404.01206v1
- Date: Mon, 1 Apr 2024 16:08:18 GMT
- Title: Machine Unlearning for Traditional Models and Large Language Models: A Short Survey
- Authors: Yi Xu,
- Abstract summary: Machine unlearning aims to delete data and reduce its impact on models according to user requests.
This paper categorizes and investigates unlearning on both traditional models and Large Language Models (LLMs)
- Score: 11.539080008361662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the implementation of personal data privacy regulations, the field of machine learning (ML) faces the challenge of the "right to be forgotten". Machine unlearning has emerged to address this issue, aiming to delete data and reduce its impact on models according to user requests. Despite the widespread interest in machine unlearning, comprehensive surveys on its latest advancements, especially in the field of Large Language Models (LLMs) is lacking. This survey aims to fill this gap by providing an in-depth exploration of machine unlearning, including the definition, classification and evaluation criteria, as well as challenges in different environments and their solutions. Specifically, this paper categorizes and investigates unlearning on both traditional models and LLMs, and proposes methods for evaluating the effectiveness and efficiency of unlearning, and standards for performance measurement. This paper reveals the limitations of current unlearning techniques and emphasizes the importance of a comprehensive unlearning evaluation to avoid arbitrary forgetting. This survey not only summarizes the key concepts of unlearning technology but also points out its prominent issues and feasible directions for future research, providing valuable guidance for scholars in the field.
Related papers
- A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated learning (FL) offers a compelling framework for training large language models (LLMs)
We focus on machine unlearning, a crucial aspect for complying with privacy regulations like the Right to be Forgotten.
We explore various strategies that enable effective unlearning, such as perturbation techniques, model decomposition, and incremental learning.
arXiv Detail & Related papers (2024-06-14T08:40:58Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Machine Unlearning: Taxonomy, Metrics, Applications, Challenges, and
Prospects [17.502158848870426]
Data users have been endowed with the right to be forgotten of their data.
In the course of machine learning (ML), the forgotten right requires a model provider to delete user data.
Machine unlearning emerges to address this, which has garnered ever-increasing attention from both industry and academia.
arXiv Detail & Related papers (2024-03-13T05:11:24Z) - Machine Unlearning: Solutions and Challenges [21.141664917477257]
Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation.
To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models.
This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning.
arXiv Detail & Related papers (2023-08-14T10:45:51Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - Exploring the Landscape of Machine Unlearning: A Comprehensive Survey
and Taxonomy [17.535417441295074]
Machine unlearning (MU) is gaining increasing attention due to the need to remove or modify predictions made by machine learning (ML) models.
This paper presents a comprehensive survey of MU, covering current state-of-the-art techniques and approaches.
The paper also highlights the challenges that need to be addressed, including attack sophistication, standardization, transferability, interpretability, and resource constraints.
arXiv Detail & Related papers (2023-05-10T12:02:18Z) - Privacy Adhering Machine Un-learning in NLP [66.17039929803933]
In real world industry use Machine Learning to build models on user data.
Such mandates require effort both in terms of data as well as model retraining.
continuous removal of data and model retraining steps do not scale.
We propose textitMachine Unlearning to tackle this challenge.
arXiv Detail & Related papers (2022-12-19T16:06:45Z) - Learnware: Small Models Do Big [69.88234743773113]
The prevailing big model paradigm, which has achieved impressive results in natural language processing and computer vision applications, has not yet addressed those issues, whereas becoming a serious source of carbon emissions.
This article offers an overview of the learnware paradigm, which attempts to enable users not need to build machine learning models from scratch, with the hope of reusing small models to do things even beyond their original purposes.
arXiv Detail & Related papers (2022-10-07T15:55:52Z) - A Survey of Machine Unlearning [56.017968863854186]
Recent regulations now require that, on request, private information about a user must be removed from computer systems.
ML models often remember' the old data.
Recent works on machine unlearning have not been able to completely solve the problem.
arXiv Detail & Related papers (2022-09-06T08:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.