Intelligent System of Emergent Knowledge: A Coordination Fabric for Billions of Minds
- URL: http://arxiv.org/abs/2506.09335v1
- Date: Wed, 11 Jun 2025 02:28:05 GMT
- Title: Intelligent System of Emergent Knowledge: A Coordination Fabric for Billions of Minds
- Authors: Moshi Wei, Sparks Li,
- Abstract summary: The Intelligent System of Emergent Knowledge (ISEK) establishes a decentralized network where human and artificial intelligence agents collaborate as peers.<n>ISEK combines three fundamental principles: (1) a decentralized multi-agent architecture resistant to censorship, (2) symbiotic AI-human collaboration with equal participation rights, and (3) resilient self-adaptation through distributed consensus mechanisms.<n>Economic incentives are governed by the native $ISEK token, facilitating micropayments, governance participation, and reputation tracking.
- Score: 1.0742675209112622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Intelligent System of Emergent Knowledge (ISEK) establishes a decentralized network where human and artificial intelligence agents collaborate as peers, forming a self-organizing cognitive ecosystem. Built on Web3 infrastructure, ISEK combines three fundamental principles: (1) a decentralized multi-agent architecture resistant to censorship, (2) symbiotic AI-human collaboration with equal participation rights, and (3) resilient self-adaptation through distributed consensus mechanisms. The system implements an innovative coordination protocol featuring a six-phase workflow (Publish, Discover, Recruit, Execute, Settle, Feedback) for dynamic task allocation, supported by robust fault tolerance and a multidimensional reputation system. Economic incentives are governed by the native $ISEK token, facilitating micropayments, governance participation, and reputation tracking, while agent sovereignty is maintained through NFT-based identity management. This synthesis of blockchain technology, artificial intelligence, and incentive engineering creates an infrastructure that actively facilitates emergent intelligence. ISEK represents a paradigm shift from conventional platforms, enabling the organic development of large-scale, decentralized cognitive systems where autonomous agents collectively evolve beyond centralized constraints.
Related papers
- Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web.<n>In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users.<n>We present a structured framework for understanding and building the Agentic Web.
arXiv Detail & Related papers (2025-07-28T17:58:12Z) - When Autonomy Goes Rogue: Preparing for Risks of Multi-Agent Collusion in Social Systems [78.04679174291329]
We introduce a proof-of-concept to simulate the risks of malicious multi-agent systems (MAS)<n>We apply this framework to two high-risk fields: misinformation spread and e-commerce fraud.<n>Our findings show that decentralized systems are more effective at carrying out malicious actions than centralized ones.
arXiv Detail & Related papers (2025-07-19T15:17:30Z) - PromptChain: A Decentralized Web3 Architecture for Managing AI Prompts as Digital Assets [0.0]
We present PromptChain, a decentralized Web3 architecture that establishes AI prompts as first-class digital assets with verifiable ownership, version control, and monetization capabilities.<n>Our design includes: (1) a comprehensive metadata schema for cross-model compatibility, (2) a stake-weighted validation mechanism to align incentives, and (3) a token economy that rewards contributors proportionally to their impact.
arXiv Detail & Related papers (2025-07-13T11:10:39Z) - AI Flow: Perspectives, Scenarios, and Approaches [51.38621621775711]
We introduce AI Flow, a framework that integrates cutting-edge IT and CT advancements.<n>First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters.<n>Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features.<n>Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow.
arXiv Detail & Related papers (2025-06-14T12:43:07Z) - Neural Brain: A Neuroscience-inspired Framework for Embodied Agents [58.58177409853298]
Current AI systems, such as large language models, remain disembodied, unable to physically engage with the world.<n>At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability.<n>This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges.
arXiv Detail & Related papers (2025-05-12T15:05:34Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
We introduce the Internet of Agents (IoA) as a foundational framework that enables seamless interconnection, dynamic discovery, and collaborative orchestration among heterogeneous agents at scale.<n>We analyze the key operational enablers of IoA, including capability notification and discovery, adaptive communication protocols, dynamic task matching, consensus and conflict-resolution mechanisms, and incentive models.
arXiv Detail & Related papers (2025-05-12T02:04:37Z) - Trustworthy Decentralized Autonomous Machines: A New Paradigm in Automation Economy [45.55770948876387]
Decentralized Autonomous Machines (DAMs) are capable of managing both digital and physical assets.<n>We argue that DAMs are pivotal in transitioning from trust-based to trustless economic models.<n>The integration of AI-driven decision-making, IoT-enabled operational autonomy, and blockchain-based governance allows DAMs to decentralize ownership, optimize resource allocation, and democratize access to economic opportunities.
arXiv Detail & Related papers (2025-04-22T07:59:46Z) - LOKA Protocol: A Decentralized Framework for Trustworthy and Ethical AI Agent Ecosystems [0.0]
We present the novel LOKA Protocol (Layered Orchestration for Knowledgeful Agents), a unified, systems-level architecture for building ethically governed, interoperable AI agent ecosystems.<n>LOKA introduces a proposed Universal Agent Identity Layer (UAIL) for decentralized, verifiable identity; intent-centric communication protocols for semantic coordination across diverse agents; and a Decentralized Ethical Consensus Protocol (DECP) that could enable agents to make context-aware decisions grounded in shared ethical baselines.
arXiv Detail & Related papers (2025-04-15T06:51:35Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.<n>As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.<n>This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - From Autonomous Agents to Integrated Systems, A New Paradigm: Orchestrated Distributed Intelligence [0.0]
We introduce the concept of Orchestrated Distributed Intelligence (ODI)<n>ODI reconceptualizes AI as cohesive, orchestrated networks that work in tandem with human expertise.<n>Our work outlines key theoretical implications and presents a practical roadmap for future research and enterprise innovation.
arXiv Detail & Related papers (2025-03-17T22:21:25Z) - Position: Emergent Machina Sapiens Urge Rethinking Multi-Agent Paradigms [6.285314639722078]
We argue that AI agents should be empowered to dynamically adjust their objectives.<n>We call for a shift toward the emergent, self-organizing, and context-aware nature of these systems.
arXiv Detail & Related papers (2025-02-05T22:20:15Z) - A Decentralized Approach Towards Responsible AI in Social Ecosystems [0.0]
We present a framework that provides computational facilities for parties in a social ecosystem to produce the desired AI behaviors.
We analyze AI systems at the architecture level and propose two cryptographic mechanisms for an AI system architecture.
We argue the case that a decentralized approach is the most promising path towards Responsible AI from both the computer science and social science perspectives.
arXiv Detail & Related papers (2021-02-12T06:33:42Z) - On the Philosophical, Cognitive and Mathematical Foundations of
Symbiotic Autonomous Systems (SAS) [87.3520234553785]
Symbiotic Autonomous Systems (SAS) are advanced intelligent and cognitive systems exhibiting autonomous collective intelligence.
This work presents a theoretical framework of SAS underpinned by the latest advances in intelligence, cognition, computer, and system sciences.
arXiv Detail & Related papers (2021-02-11T05:44:25Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.