論文の概要: Hidden in Plain Sight: Evaluation of the Deception Detection Capabilities of LLMs in Multimodal Settings
- arxiv url: http://arxiv.org/abs/2506.09424v1
- Date: Wed, 11 Jun 2025 06:12:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:02.571635
- Title: Hidden in Plain Sight: Evaluation of the Deception Detection Capabilities of LLMs in Multimodal Settings
- Title(参考訳): 平面視に隠されたLLMの誤検出能力の評価
- Authors: Md Messal Monem Miah, Adrita Anika, Xi Shi, Ruihong Huang,
- Abstract要約: 本稿では,Large Language Model (LLM) とLarge Multimodal Model (LMM) の自動偽造検出機能について,包括的に評価する。
実生活トライアル面接(RLTD)、対人的シナリオ(MU3D)、詐欺的レビュー(OpSpam)の3つの異なるデータセットを用いて、オープンソースおよび商用LLMの性能を評価する。
以上の結果から,LMMはクロスモーダルな手法を十分に活用するのに苦戦しているのに対し,微調整のLLMはテキスト偽造検出タスクにおいて最先端のパフォーマンスを実現することが示唆された。
- 参考スコア(独自算出の注目度): 14.065907685322097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting deception in an increasingly digital world is both a critical and challenging task. In this study, we present a comprehensive evaluation of the automated deception detection capabilities of Large Language Models (LLMs) and Large Multimodal Models (LMMs) across diverse domains. We assess the performance of both open-source and commercial LLMs on three distinct datasets: real life trial interviews (RLTD), instructed deception in interpersonal scenarios (MU3D), and deceptive reviews (OpSpam). We systematically analyze the effectiveness of different experimental setups for deception detection, including zero-shot and few-shot approaches with random or similarity-based in-context example selection. Our results show that fine-tuned LLMs achieve state-of-the-art performance on textual deception detection tasks, while LMMs struggle to fully leverage cross-modal cues. Additionally, we analyze the impact of auxiliary features, such as non-verbal gestures and video summaries, and examine the effectiveness of different prompting strategies, including direct label generation and chain-of-thought reasoning. Our findings provide key insights into how LLMs process and interpret deceptive cues across modalities, highlighting their potential and limitations in real-world deception detection applications.
- Abstract(参考訳): ますますデジタル化されつつある世界での詐欺の検出は、決定的かつ困難な課題である。
本研究では,大規模言語モデル (LLM) と大規模マルチモーダルモデル (LMM) の自動偽造検出機能について,多分野にわたる総合評価を行った。
実生活トライアル面接(RLTD)、対人的シナリオ(MU3D)、詐欺的レビュー(OpSpam)の3つの異なるデータセットを用いて、オープンソースおよび商用LLMの性能を評価する。
ランダムまたは類似性に基づく実例選択によるゼロショットと少数ショットのアプローチを含む,さまざまな実験装置の有効性を系統的に解析する。
以上の結果から,LMMはクロスモーダルな手法を十分に活用するのに苦戦しているのに対し,微調整のLLMはテキスト偽造検出タスクにおいて最先端のパフォーマンスを実現することが示唆された。
さらに,非言語的ジェスチャーやビデオ要約などの補助的特徴の影響を分析し,直接ラベル生成や連鎖推論など,異なるプロンプト戦略の有効性を検討する。
以上の結果から,LLMが実世界の偽造検出アプリケーションにおいて,その可能性と限界を浮き彫りに処理し,欺造の手がかりを解釈する方法について,重要な知見が得られた。
関連論文リスト
- Unlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation [88.78166077081912]
我々は、MLLMから特定のマルチモーダル知識を削除する方法を評価するために、マルチモーダル・アンラーニング・ベンチマークUnLOK-VQAとアタック・アンド・ディフェンス・フレームワークを導入する。
その結果,マルチモーダル攻撃はテキストや画像のみの攻撃よりも優れており,最も効果的な防御は内部モデル状態から解答情報を除去することを示した。
論文 参考訳(メタデータ) (2025-05-01T01:54:00Z) - Survey of Adversarial Robustness in Multimodal Large Language Models [17.926240920647892]
MLLM(Multimodal Large Language Models)は、人工知能において例外的な性能を示す。
現実世界のアプリケーションへのデプロイは、敵の脆弱性に対する重大な懸念を引き起こす。
本稿では,MLLMの対角的ロバスト性について述べる。
論文 参考訳(メタデータ) (2025-03-18T06:54:59Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
MLLM(Multimodal Large Language Models)は、視覚情報とテキスト情報を統合するための強力なツールとなっている。
本稿では,MLLMの知覚的理解と抽象的関係推論を評価するためのベンチマークVOILAを紹介する。
我々は,現在のMLLMが画像間関係の理解に苦慮し,高レベルの関係推論において限られた能力を示すことを明らかにした。
論文 参考訳(メタデータ) (2025-02-25T23:36:19Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とLLMのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - Beyond the Known: Investigating LLMs Performance on Out-of-Domain Intent
Detection [34.135738700682055]
本稿では,ChatGPTで表される大規模言語モデル(LLM)を包括的に評価する。
LLMには強力なゼロショット機能と少数ショット機能があるが、フルリソースで微調整されたモデルに比べれば依然として不利である。
論文 参考訳(メタデータ) (2024-02-27T07:02:10Z) - SHIELD : An Evaluation Benchmark for Face Spoofing and Forgery Detection with Multimodal Large Language Models [61.8876114116716]
MLLM(Multimodal large language model)は、視覚関連タスクにおいて強力な機能を示す。
しかし、顔攻撃検出タスクにおける微妙な視覚的偽造や偽造の手がかりを検出する能力は、まだ探索されていない。
フェーススプーフィングと偽造検出のためのMLLM評価のためのベンチマークShiELDを導入する。
論文 参考訳(メタデータ) (2024-02-06T17:31:36Z) - Stance Detection with Collaborative Role-Infused LLM-Based Agents [39.75103353173015]
スタンス検出は、ウェブおよびソーシャルメディア研究におけるコンテンツ分析に不可欠である。
しかし、姿勢検出には、著者の暗黙の視点を推測する高度な推論が必要である。
LLMを異なる役割に指定した3段階のフレームワークを設計する。
複数のデータセットにまたがって最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-10-16T14:46:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。