A Survey on the Role of Artificial Intelligence and Machine Learning in 6G-V2X Applications
- URL: http://arxiv.org/abs/2506.09512v1
- Date: Wed, 11 Jun 2025 08:36:18 GMT
- Title: A Survey on the Role of Artificial Intelligence and Machine Learning in 6G-V2X Applications
- Authors: Donglin Wang, Anjie Qiu, Qiuheng Zhou, Hans D. Schotten,
- Abstract summary: 6G networks are expected to provide ultra-reliable, low-latency, and high-capacity connectivity for Connected and Autonomous Vehicles (CAVs)<n>Artificial Intelligence (AI) and Machine Learning (ML) have emerged as key enablers in optimizing V2X communication.<n>This survey comprehensively reviews advances in AI and ML models applied to 6G-V2X communication.
- Score: 23.80480028319579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of Vehicle-to-Everything (V2X) communication is transforming Intelligent Transportation Systems (ITS), with 6G networks expected to provide ultra-reliable, low-latency, and high-capacity connectivity for Connected and Autonomous Vehicles (CAVs). Artificial Intelligence (AI) and Machine Learning (ML) have emerged as key enablers in optimizing V2X communication by enhancing network management, predictive analytics, security, and cooperative driving due to their outstanding performance across various domains, such as natural language processing and computer vision. This survey comprehensively reviews recent advances in AI and ML models applied to 6G-V2X communication. It focuses on state-of-the-art techniques, including Deep Learning (DL), Reinforcement Learning (RL), Generative Learning (GL), and Federated Learning (FL), with particular emphasis on developments from the past two years. Notably, AI, especially GL, has shown remarkable progress and emerging potential in enhancing the performance, adaptability, and intelligence of 6G-V2X systems. Despite these advances, a systematic summary of recent research efforts in this area remains lacking, which this survey aims to address. We analyze their roles in 6G-V2X applications, such as intelligent resource allocation, beamforming, intelligent traffic management, and security management. Furthermore, we explore the technical challenges, including computational complexity, data privacy, and real-time decision-making constraints, while identifying future research directions for AI-driven 6G-V2X development. This study aims to provide valuable insights for researchers, engineers, and policymakers working towards realizing intelligent, AI-powered V2X ecosystems in 6G communication.
Related papers
- Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
This paper presents a comprehensive overview of AI and communication for 6G networks.<n>We first review the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G.<n>The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks.
arXiv Detail & Related papers (2024-12-19T05:36:34Z) - Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Unveiling AI's Potential Through Tools, Techniques, and Applications [17.624263707781655]
Artificial intelligence (AI), machine learning, and deep learning have become transformative forces in big data analytics and management.<n>This article delves into the foundational concepts and cutting-edge developments in these fields.<n>By bridging theoretical underpinnings with actionable strategies, it showcases the potential of AI and LLMs to revolutionize big data management.
arXiv Detail & Related papers (2024-10-02T06:24:51Z) - A Life-long Learning Intrusion Detection System for 6G-Enabled IoV [3.2284427438223013]
6G technology will revolutionize the Internet of Vehicles (IoV) with ultra-high data rates and seamless network coverage.
6G will likely increase the IoV's susceptibility to a spectrum of emerging cyber threats.
This paper presents a novel intrusion detection system leveraging the paradigm of life-long (or continual) learning.
arXiv Detail & Related papers (2024-07-22T15:07:27Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
Video Anomaly Detection (VAD) is a fundamental research task within the Artificial Intelligence (AI) community.<n>With the advancements in deep learning and edge computing, VAD has made significant progress.<n>This article offers an exhaustive tutorial for novices in NSVAD.
arXiv Detail & Related papers (2024-05-16T02:00:44Z) - Toward 6G Native-AI Network: Foundation Model based Cloud-Edge-End Collaboration Framework [55.73948386625618]
We analyze the challenges of achieving 6G native AI from perspectives of data, AI models, and operational paradigm.<n>We propose a 6G native AI framework based on foundation models, provide an integration method for the expert knowledge, present the customization for two kinds of PFM, and outline a novel operational paradigm for the native AI framework.
arXiv Detail & Related papers (2023-10-26T15:19:40Z) - Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio
Access Technologies [56.77079930521082]
We have conducted a detailed measurement campaign that paves the way to a plethora of diverse ML-based studies.
The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies.
We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage.
arXiv Detail & Related papers (2022-12-20T15:26:39Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6G will revolutionize the evolution of wireless from "connected things" to "connected intelligence"
Deep learning and big data analytics based AI systems require tremendous computation and communication resources.
edge AI stands out as a disruptive technology for 6G to seamlessly integrate sensing, communication, computation, and intelligence.
arXiv Detail & Related papers (2021-11-24T11:47:16Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
Ultra-reliable and low-latency communications (URLLC) will be central for the development of various emerging mission-critical applications.
Deep learning algorithms have been considered as promising ways of developing enabling technologies for URLLC in future 6G networks.
This tutorial illustrates how domain knowledge can be integrated into different kinds of deep learning algorithms for URLLC.
arXiv Detail & Related papers (2020-09-13T14:53:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.