Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio
Access Technologies
- URL: http://arxiv.org/abs/2212.10343v3
- Date: Fri, 14 Apr 2023 16:15:30 GMT
- Title: Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio
Access Technologies
- Authors: Rodrigo Hernang\'omez, Philipp Geuer, Alexandros Palaios, Daniel
Sch\"aufele, Cara Watermann, Khawla Taleb-Bouhemadi, Mohammad Parvini, Anton
Krause, Sanket Partani, Christian Vielhaus, Martin Kasparick, Daniel F.
K\"ulzer, Friedrich Burmeister, Frank H. P. Fitzek, Hans D. Schotten, Gerhard
Fettweis, S{\l}awomir Sta\'nczak
- Abstract summary: We have conducted a detailed measurement campaign that paves the way to a plethora of diverse ML-based studies.
The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies.
We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage.
- Score: 56.77079930521082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evolution of wireless communications into 6G and beyond is expected to
rely on new machine learning (ML)-based capabilities. These can enable
proactive decisions and actions from wireless-network components to sustain
quality-of-service (QoS) and user experience. Moreover, new use cases in the
area of vehicular and industrial communications will emerge. Specifically in
the area of vehicle communication, vehicle-to-everything (V2X) schemes will
benefit strongly from such advances. With this in mind, we have conducted a
detailed measurement campaign that paves the way to a plethora of diverse
ML-based studies. The resulting datasets offer GPS-located wireless
measurements across diverse urban environments for both cellular (with two
different operators) and sidelink radio access technologies, thus enabling a
variety of different studies towards V2X. The datasets are labeled and sampled
with a high time resolution. Furthermore, we make the data publicly available
with all the necessary information to support the onboarding of new
researchers. We provide an initial analysis of the data showing some of the
challenges that ML needs to overcome and the features that ML can leverage, as
well as some hints at potential research studies.
Related papers
- Multi-V2X: A Large Scale Multi-modal Multi-penetration-rate Dataset for Cooperative Perception [3.10770247120758]
We introduce Multi-V2X, a large-scale, multi-modal, multi-penetration-rate dataset for V2X perception.
In total, our Multi-V2X dataset comprises 549k RGB frames, 146k LiDAR frames, and 4,219k annotated 3D bounding boxes.
The highest possible CAV penetration rate reaches 86.21%, with up to 31 agents in communication range.
arXiv Detail & Related papers (2024-09-08T05:22:00Z) - Collaborative Perception Datasets in Autonomous Driving: A Survey [0.0]
The paper systematically analyzes a variety of datasets, comparing them based on aspects such as diversity, sensor setup, quality, public availability, and their applicability to downstream tasks.
The importance of addressing privacy and security concerns in the development of datasets is emphasized, regarding data sharing and dataset creation.
arXiv Detail & Related papers (2024-04-22T09:36:17Z) - UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
We introduce UniTraj, a comprehensive framework that unifies various datasets, models, and evaluation criteria.
We conduct extensive experiments and find that model performance significantly drops when transferred to other datasets.
We provide insights into dataset characteristics to explain these findings.
arXiv Detail & Related papers (2024-03-22T10:36:50Z) - QoS prediction in radio vehicular environments via prior user
information [54.853542701389074]
We evaluate ML tree-ensemble methods to predict in the range of minutes with data collected from a cellular test network.
Specifically, we use the correlations of the measurements coming from the radio environment by including information of prior vehicles to enhance the prediction of the target vehicles.
arXiv Detail & Related papers (2024-02-27T17:05:41Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
This review systematically assesses over seventy open-source autonomous driving datasets.
It offers insights into various aspects, such as the principles underlying the creation of high-quality datasets.
It also delves into the scientific and technical challenges that warrant resolution.
arXiv Detail & Related papers (2023-12-06T10:46:53Z) - Toward an AI-enabled Connected Industry: AGV Communication and Sensor Measurement Datasets [33.89321466798318]
This paper presents two wireless measurement campaigns in industrial testbeds: industrial Vehicle-to-vehicle (iV2V) and industrial Vehicle-to-infrastructure plus Sensor (iV2I+)
iV2V covers sidelink communication scenarios between Automated Guided Vehicles (AGVs), while iV2I+ is conducted at an industrial setting where an autonomous cleaning robot is connected to a private cellular network.
The combination of different communication technologies within a common measurement methodology provides insights that can be exploited by Machine Learning (ML) for tasks such as fingerprinting, line-of-sight detection, prediction of quality of service or
arXiv Detail & Related papers (2022-12-20T15:04:20Z) - V2X-Sim: A Virtual Collaborative Perception Dataset for Autonomous
Driving [26.961213523096948]
Vehicle-to-everything (V2X) denotes the collaboration between a vehicle and any entity in its surrounding.
We present the V2X-Sim dataset, the first public large-scale collaborative perception dataset in autonomous driving.
arXiv Detail & Related papers (2022-02-17T05:14:02Z) - Wireless for Machine Learning [91.13476340719087]
We give an exhaustive review of the state-of-the-art wireless methods that are specifically designed to support machine learning services over distributed datasets.
There are two clear themes within the literature, analog over-the-air computation and digital radio resource management optimized for ML.
This survey gives a comprehensive introduction to these methods, reviews the most important works, highlights open problems, and discusses application scenarios.
arXiv Detail & Related papers (2020-08-31T11:09:49Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
Much concern in mobile data analysis is related to human beings and their behaviours.
This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data.
arXiv Detail & Related papers (2020-08-29T15:14:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.