Enhancing Human-Robot Collaboration: A Sim2Real Domain Adaptation Algorithm for Point Cloud Segmentation in Industrial Environments
- URL: http://arxiv.org/abs/2506.09552v1
- Date: Wed, 11 Jun 2025 09:36:07 GMT
- Title: Enhancing Human-Robot Collaboration: A Sim2Real Domain Adaptation Algorithm for Point Cloud Segmentation in Industrial Environments
- Authors: Fatemeh Mohammadi Amin, Darwin G. Caldwell, Hans Wernher van de Venn,
- Abstract summary: This paper introduces a pioneering approach in the Sim2Real domain adaptation for semantic segmentation of 3D point cloud data, specifically tailored for HRC.<n>Our focus is on developing a network that robustly transitions from simulated environments to real-world applications, thereby enhancing its practical utility and impact on a safe HRC.<n>The proposed model was evaluated on real-world HRC setups and simulation industrial point clouds, it showed increased state-of-the-art performance, achieving a segmentation accuracy of 97.76%, and superior robustness compared to existing methods.
- Score: 6.250798517067454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The robust interpretation of 3D environments is crucial for human-robot collaboration (HRC) applications, where safety and operational efficiency are paramount. Semantic segmentation plays a key role in this context by enabling a precise and detailed understanding of the environment. Considering the intense data hunger for real-world industrial annotated data essential for effective semantic segmentation, this paper introduces a pioneering approach in the Sim2Real domain adaptation for semantic segmentation of 3D point cloud data, specifically tailored for HRC. Our focus is on developing a network that robustly transitions from simulated environments to real-world applications, thereby enhancing its practical utility and impact on a safe HRC. In this work, we propose a dual-stream network architecture (FUSION) combining Dynamic Graph Convolutional Neural Networks (DGCNN) and Convolutional Neural Networks (CNN) augmented with residual layers as a Sim2Real domain adaptation algorithm for an industrial environment. The proposed model was evaluated on real-world HRC setups and simulation industrial point clouds, it showed increased state-of-the-art performance, achieving a segmentation accuracy of 97.76%, and superior robustness compared to existing methods.
Related papers
- Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition [63.55828203989405]
We introduce a novel Topology-Aware Modeling (TAM) framework for Sim2Real UDA on object point clouds.<n>Our approach mitigates the domain gap by leveraging global spatial topology, characterized by low-level, high-frequency 3D structures.<n>We propose an advanced self-training strategy that combines cross-domain contrastive learning with self-training.
arXiv Detail & Related papers (2025-06-26T11:53:59Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - Spatio-Temporal 3D Point Clouds from WiFi-CSI Data via Transformer Networks [2.084922791522632]
Joint communication and sensing (JC&S) is emerging as a key component in 5G and 6G networks.
We present a transformer-based architecture that processes temporal Channel State Information (CSI) data, specifically amplitude and phase, to generate 3D point clouds of indoor environments.
arXiv Detail & Related papers (2024-10-07T08:59:04Z) - CTS: Sim-to-Real Unsupervised Domain Adaptation on 3D Detection [16.96201890965781]
This paper presents a novel framework to transfer models from labeled simulation to unlabeled reality domains.
Experimental results demonstrate that our proposed approach significantly enhances the sim-to-real domain adaptation capability of 3D object detection models.
arXiv Detail & Related papers (2024-06-26T07:31:16Z) - Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection [50.448520056844885]
We propose a novel framework for syn-to-real unsupervised domain adaptation in indoor 3D object detection.
Our adaptation results from synthetic dataset 3D-FRONT to real-world datasets ScanNetV2 and SUN RGB-D demonstrate remarkable mAP25 improvements of 9.7% and 9.1% over Source-Only baselines.
arXiv Detail & Related papers (2024-06-17T08:18:41Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
We introduce a new dataset called Robot Control Gestures (RoCoG-v2)
The dataset is composed of both real and synthetic videos from seven gesture classes.
We present results using state-of-the-art action recognition and domain adaptation algorithms.
arXiv Detail & Related papers (2023-03-17T23:23:55Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Unseen Object Instance Segmentation with Fully Test-time RGB-D
Embeddings Adaptation [14.258456366985444]
Recently, a popular solution is leveraging RGB-D features of large-scale synthetic data and applying the model to unseen real-world scenarios.
We re-emphasize the adaptation process across Sim2Real domains in this paper.
We propose a framework to conduct the Fully Test-time RGB-D Embeddings Adaptation (FTEA) based on parameters of the BatchNorm layer.
arXiv Detail & Related papers (2022-04-21T02:35:20Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Unsupervised Domain Adaptation for Mobile Semantic Segmentation based on
Cycle Consistency and Feature Alignment [28.61782696432711]
We propose a novel Unsupervised Domain Adaptation (UDA) strategy to address the domain shift issue between real world and synthetic representations.
We show how the proposed strategy is able to obtain impressive performance in adapting a segmentation network trained on synthetic data to real world scenarios.
arXiv Detail & Related papers (2020-01-14T10:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.