MEDUSA: A Multimodal Deep Fusion Multi-Stage Training Framework for Speech Emotion Recognition in Naturalistic Conditions
- URL: http://arxiv.org/abs/2506.09556v1
- Date: Wed, 11 Jun 2025 09:41:23 GMT
- Title: MEDUSA: A Multimodal Deep Fusion Multi-Stage Training Framework for Speech Emotion Recognition in Naturalistic Conditions
- Authors: Georgios Chatzichristodoulou, Despoina Kosmopoulou, Antonios Kritikos, Anastasia Poulopoulou, Efthymios Georgiou, Athanasios Katsamanis, Vassilis Katsouros, Alexandros Potamianos,
- Abstract summary: MEDUSA is a multimodal framework with a four-stage training pipeline.<n>DeepSER is a novel extension of a deep cross-modal transformer fusion mechanism.<n>Manor MixUp is employed for further regularization.
- Score: 46.34220791244788
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: SER is a challenging task due to the subjective nature of human emotions and their uneven representation under naturalistic conditions. We propose MEDUSA, a multimodal framework with a four-stage training pipeline, which effectively handles class imbalance and emotion ambiguity. The first two stages train an ensemble of classifiers that utilize DeepSER, a novel extension of a deep cross-modal transformer fusion mechanism from pretrained self-supervised acoustic and linguistic representations. Manifold MixUp is employed for further regularization. The last two stages optimize a trainable meta-classifier that combines the ensemble predictions. Our training approach incorporates human annotation scores as soft targets, coupled with balanced data sampling and multitask learning. MEDUSA ranked 1st in Task 1: Categorical Emotion Recognition in the Interspeech 2025: Speech Emotion Recognition in Naturalistic Conditions Challenge.
Related papers
- OpenOmni: Advancing Open-Source Omnimodal Large Language Models with Progressive Multimodal Alignment and Real-Time Self-Aware Emotional Speech Synthesis [73.03333371375]
name is a two-stage training framework that integrates omnimodal alignment and speech generation.<n>It surpasses state-of-the-art models across omnimodal, vision-language, and speech-language benchmarks.<n>name achieves real-time speech generation with 1s latency at non-autoregressive mode.
arXiv Detail & Related papers (2025-01-08T15:18:09Z) - SIFToM: Robust Spoken Instruction Following through Theory of Mind [51.326266354164716]
We present a cognitively inspired model, Speech Instruction Following through Theory of Mind (SIFToM), to enable robots to pragmatically follow human instructions under diverse speech conditions.
Results show that the SIFToM model outperforms state-of-the-art speech and language models, approaching human-level accuracy on challenging speech instruction following tasks.
arXiv Detail & Related papers (2024-09-17T02:36:10Z) - MSP-Podcast SER Challenge 2024: L'antenne du Ventoux Multimodal Self-Supervised Learning for Speech Emotion Recognition [12.808666808009926]
We submit to the 2024 edition of the MSP-Podcast Speech Emotion Recognition (SER) Challenge.
This challenge is divided into two distinct tasks: Categorical Emotion Recognition and Emotional Attribute Prediction.
Our approach employs an ensemble of models, each trained independently and then fused at the score level using a Support Vector Machine (SVM)
This joint training methodology aims to enhance the system's ability to accurately classify emotional states.
arXiv Detail & Related papers (2024-07-08T08:52:06Z) - BLSP-Emo: Towards Empathetic Large Speech-Language Models [34.62210186235263]
We present BLSP-Emo, a novel approach to developing an end-to-end speech-language model capable of understanding both semantics and emotions in speech.
Our experiments demonstrate that the BLSP-Emo model excels in comprehending speech and delivering empathetic responses.
arXiv Detail & Related papers (2024-06-06T09:02:31Z) - UMETTS: A Unified Framework for Emotional Text-to-Speech Synthesis with Multimodal Prompts [64.02363948840333]
UMETTS is a novel framework that leverages emotional cues from multiple modalities to generate highly expressive and emotionally resonant speech.<n>EP-Align employs contrastive learning to align emotional features across text, audio, and visual modalities, ensuring a coherent fusion of multimodal information.<n>EMI-TTS integrates the aligned emotional embeddings with state-of-the-art TTS models to synthesize speech that accurately reflects the intended emotions.
arXiv Detail & Related papers (2024-04-29T03:19:39Z) - Attention-based Interactive Disentangling Network for Instance-level
Emotional Voice Conversion [81.1492897350032]
Emotional Voice Conversion aims to manipulate a speech according to a given emotion while preserving non-emotion components.
We propose an Attention-based Interactive diseNtangling Network (AINN) that leverages instance-wise emotional knowledge for voice conversion.
arXiv Detail & Related papers (2023-12-29T08:06:45Z) - Audio is all in one: speech-driven gesture synthetics using WavLM pre-trained model [2.827070255699381]
diffmotion-v2 is a speech-conditional diffusion-based generative model with WavLM pre-trained model.
It can produce individual and stylized full-body co-speech gestures only using raw speech audio.
arXiv Detail & Related papers (2023-08-11T08:03:28Z) - MEmoBERT: Pre-training Model with Prompt-based Learning for Multimodal
Emotion Recognition [118.73025093045652]
We propose a pre-training model textbfMEmoBERT for multimodal emotion recognition.
Unlike the conventional "pre-train, finetune" paradigm, we propose a prompt-based method that reformulates the downstream emotion classification task as a masked text prediction.
Our proposed MEmoBERT significantly enhances emotion recognition performance.
arXiv Detail & Related papers (2021-10-27T09:57:00Z) - Multimodal Emotion Recognition with High-level Speech and Text Features [8.141157362639182]
We propose a novel cross-representation speech model to perform emotion recognition on wav2vec 2.0 speech features.
We also train a CNN-based model to recognize emotions from text features extracted with Transformer-based models.
Our method is evaluated on the IEMOCAP dataset in a 4-class classification problem.
arXiv Detail & Related papers (2021-09-29T07:08:40Z) - Limited Data Emotional Voice Conversion Leveraging Text-to-Speech:
Two-stage Sequence-to-Sequence Training [91.95855310211176]
Emotional voice conversion aims to change the emotional state of an utterance while preserving the linguistic content and speaker identity.
We propose a novel 2-stage training strategy for sequence-to-sequence emotional voice conversion with a limited amount of emotional speech data.
The proposed framework can perform both spectrum and prosody conversion and achieves significant improvement over the state-of-the-art baselines in both objective and subjective evaluation.
arXiv Detail & Related papers (2021-03-31T04:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.