Quench dynamics of negativity Hamiltonians
- URL: http://arxiv.org/abs/2506.09561v1
- Date: Wed, 11 Jun 2025 09:47:55 GMT
- Title: Quench dynamics of negativity Hamiltonians
- Authors: Riccardo Travaglino, Colin Rylands, Pasquale Calabrese,
- Abstract summary: We investigate the quench dynamics of the negativity and fermionic negativity Hamiltonians in free fermionic systems.<n>We find that the standard negativity Hamiltonian contains both non-local hopping terms and four fermion interactions, whereas the fermionic version is purely quadratic.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the quench dynamics of the negativity and fermionic negativity Hamiltonians in free fermionic systems. We do this by generalizing a recently developed quasiparticle picture for the entanglement Hamiltonians to tripartite geometries. We obtain analytic expressions for these quantities which are then extensively checked against previous results and numerics. In particular, we find that the standard negativity Hamiltonian contains both non-local hopping terms and four fermion interactions, whereas the fermionic version is purely quadratic. However, despite their marked difference, we show that the logarithmic negativity obtained from either are identical in the ballistic scaling limit, as are their symmetry resolution.
Related papers
- Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.<n>We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.<n>We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - On the Bisognano-Wichmann entanglement Hamiltonian of nonrelativistic fermions [0.0]
We study the ground-state entanglement Hamiltonian of free nonrelativistic fermions for semi-infinite domains in one dimension.
We prove that the Bisognano-Wichmann form of the entanglement Hamiltonian becomes exact.
arXiv Detail & Related papers (2024-10-21T18:55:23Z) - Entanglement Hamiltonian for inhomogeneous free fermions [0.0]
We study the entanglement Hamiltonian for the ground state of one-dimensional free fermions in the presence of an inhomogeneous chemical potential.
It is shown that, for both models, conformal field theory predicts a Bisognano-Wichmann form for the entangement Hamiltonian of a half-infinite system.
arXiv Detail & Related papers (2024-03-21T18:13:10Z) - Hamiltonian for a Bose gas with Contact Interactions [49.1574468325115]
We study the Hamiltonian for a three-dimensional Bose gas of $N geq 3$ spinless particles interacting via zero-range (also known as contact) interactions.<n>Such interactions are encoded by (singular) boundary conditions imposed on the coincidence hyperplanes, i.e., when the coordinates of two particles coincide.<n>We construct a class of Hamiltonians characterized by such modified boundary conditions, that are self-adjoint and bounded from below.
arXiv Detail & Related papers (2024-03-19T10:00:12Z) - On the different Floquet Hamiltonians in a periodic-driven
Bose-Josephson junction [20.911442759840586]
bosonic Josephson junction is one of the maximally simple models for periodic-driven many-body systems.
Here, we revisit this problem with five different methods, all of which have solid theoretical reasoning.
We find that the parameters in the Floquet Hamiltonians may be unchanged, increased, or decreased, depending on the approximations used.
arXiv Detail & Related papers (2023-12-28T06:38:19Z) - Finite temperature negativity Hamiltonians of the massless Dirac fermion [0.0]
We consider as a genuine example of a mixed state the one-dimensional massless Dirac fermions in a system at finite temperature and size.
The structure of the corresponding negativity Hamiltonian resembles the one for the entanglement Hamiltonian in the same geometry.
We conjecture an exact expression for the negativity Hamiltonian associated to the twisted partial transpose.
arXiv Detail & Related papers (2023-04-19T18:10:51Z) - Entanglement and negativity Hamiltonians for the massless Dirac field on
the half line [0.0]
We study the ground-state entanglement Hamiltonian of several disjoint intervals for the massless Dirac fermion on the half-line.
We find that the negativity Hamiltonian inherits the structure of the corresponding entanglement Hamiltonian.
arXiv Detail & Related papers (2022-10-21T17:09:31Z) - Regularized Zero-Range Hamiltonian for a Bose Gas with an Impurity [77.34726150561087]
We study the Hamiltonian for a system of N identical bosons interacting with an impurity.
We introduce a three-body force acting at short distances.
The effect of this force is to reduce to zero the strength of the zero-range interaction between two particles.
arXiv Detail & Related papers (2022-02-25T15:34:06Z) - The Negativity Hamiltonian: An operator characterization of mixed-state
entanglement [0.0]
We study the structure of the negativity Hamiltonian for fermionic conformal field theories and a free fermion chain.
In both cases, we show that the negativity Hamiltonian assumes a quasi-local functional form, that is captured by simple functional relations.
arXiv Detail & Related papers (2022-01-11T15:08:41Z) - Exact solution of the two-axis two-spin Hamiltonian [13.019528663019488]
Bethe ansatz solution of the two-axis two-spin Hamiltonian is derived based on the Jordan-Schwinger boson realization of the SU(2) algebra.
It is shown that the solution of the Bethe ansatz equations can be obtained as zeros of the related extended Heine-Stieltjess.
arXiv Detail & Related papers (2021-08-02T02:42:43Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.