Bipartite entanglement extracted from multimode squeezed light generated in lossy waveguides
- URL: http://arxiv.org/abs/2506.09587v2
- Date: Wed, 25 Jun 2025 16:17:32 GMT
- Title: Bipartite entanglement extracted from multimode squeezed light generated in lossy waveguides
- Authors: Denis A. Kopylov, Torsten Meier, Polina R. Sharapova,
- Abstract summary: Entangled two-mode Gaussian states constitute an important building block for continuous variable quantum computing and communication protocols.<n>We demonstrate that the squeezing quantifies entanglement and we construct a measurement basis which results in the maximal bipartite entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entangled two-mode Gaussian states constitute an important building block for continuous variable quantum computing and communication protocols and are thus of high demand for many experiments. In this work, we study such kind of states which are extracted from multimode light generated via type-II parametric down-conversion (PDC) in lossy waveguides. For such states, we demonstrate that the squeezing quantifies entanglement and we construct a measurement basis which results in the maximal bipartite entanglement. We illustrate our findings by numerically solving the spatial master equation for PDC in a Markovian environment. The optimal measurement modes are compared with two widely-used broadband bases: the Mercer-Wolf basis (the first-order coherence basis) and the Williamson-Euler basis.
Related papers
- Optimal sensing on an asymmetric exceptional surface [0.1755623101161125]
We study the connection between exceptional points (EPs) and optimal parameter estimation.<n>Partially reflecting the output of one mode into the other creates a non-Hermitian Hamiltonian which exhibits an exceptional surface (ES)<n>We find that the QFI is enhanced in the presence of an EP for both of these input states and that both states can saturate the Cram'er-Rao bound.
arXiv Detail & Related papers (2025-03-12T04:57:35Z) - Downlink MIMO Channel Estimation from Bits: Recoverability and Algorithm [47.7091447096969]
A major challenge lies in acquiring the downlink channel state information (CSI) at the base station (BS) from limited feedback sent by the user equipment (UE)
In this paper, a simple feedback framework is proposed, where a compression and Gaussian dithering-based quantization strategy is adopted at the UE side, and then a maximum likelihood estimator (MLE) is formulated at the BS side.
The algorithm is carefully designed to integrate a sophisticated harmonic retrieval (HR) solver as subroutine, which turns out to be the key of effectively tackling this hard MLE problem.
arXiv Detail & Related papers (2024-11-25T02:15:01Z) - Spectroscopy of collective modes in a Bose-Einstein condensate: From single to double excitation periods [0.0]
Collective modes are coherent excitations in Bose-Einstein condensates (BECs)<n>They can be used to probe the properties of BECs, such as the trap geometry, the interatomic interactions, and the presence of defects.<n>We propose a method to achieve a better resolution than the Rabi-like protocol, which consists of two oscillating fields separated in time.
arXiv Detail & Related papers (2024-11-06T14:17:21Z) - Sub-shot-noise interferometry with two-mode quantum states [0.0]
We study the feasibility of sub-shot-noise interferometry with imperfect detectors, starting from twin-Fock states and two mode squeezed vacuum states.
We derive analytical expressions for the corresponding phase uncertainty.
We find that one can achieve phase shift measurements below the standard quantum limit, as long as the losses are smaller than a given threshold, and that the measured phase is close enough to an optimal value.
arXiv Detail & Related papers (2023-07-31T08:18:37Z) - Multimode Squeezed State for Reconfigurable Quantum Networks at
Telecommunication Wavelengths [0.0]
We present an experimental source of multimode squeezed states of light at telecommunication wavelengths.
Generation at such wavelengths is especially important as it can enable quantum information processing, communication, and sensing beyond the laboratory scale.
Results pave the way for a scalable implementation of continuous variable quantum information protocols at telecommunication wavelengths.
arXiv Detail & Related papers (2023-06-12T17:52:40Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Structural aspects of FRG in quantum tunnelling computations [68.8204255655161]
We probe both the unidimensional quartic harmonic oscillator and the double well potential.
Two partial differential equations for the potential V_k(varphi) and the wave function renormalization Z_k(varphi) are studied.
arXiv Detail & Related papers (2022-06-14T15:23:25Z) - Generation and structuring of multipartite entanglement in Josephson
parametric system [0.0]
vacuum state of a quantum field may act as a key element for the generation of multipartite quantum entanglement.
We achieve generation of genuine tripartite entangled state and its control by the use of the phase difference between two continuous pump tones.
Our scheme provides a comprehensive control toolbox for the entanglement structure and allows us to demonstrate, for first time to our knowledge, genuine quadripartite entanglement of microwave modes.
arXiv Detail & Related papers (2022-03-17T11:16:32Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Gaussian phase sensitivity of boson-sampling-inspired strategies [0.0]
We show that input coherent states or squeezing beat the non-classical states proposed in preceding boson-sampling-inspired phase-estimation schemes.
We also develop a novel polychromatic interferometric protocol, demonstrating an enhanced sensitivity with respect to two-mode squeezed-vacuum states.
arXiv Detail & Related papers (2020-09-14T17:20:41Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.