Memorization in Language Models through the Lens of Intrinsic Dimension
- URL: http://arxiv.org/abs/2506.09591v1
- Date: Wed, 11 Jun 2025 10:42:27 GMT
- Title: Memorization in Language Models through the Lens of Intrinsic Dimension
- Authors: Stefan Arnold,
- Abstract summary: Language Models (LMs) are prone to memorizing parts of their data during training and unintentionally emitting them at generation time.<n>We investigate the role of Intrinsic Dimension (ID), a geometric proxy for the structural complexity of a sequence in latent space, in modulating memorization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language Models (LMs) are prone to memorizing parts of their data during training and unintentionally emitting them at generation time, raising concerns about privacy leakage and disclosure of intellectual property. While previous research has identified properties such as context length, parameter size, and duplication frequency, as key drivers of unintended memorization, little is known about how the latent structure modulates this rate of memorization. We investigate the role of Intrinsic Dimension (ID), a geometric proxy for the structural complexity of a sequence in latent space, in modulating memorization. Our findings suggest that ID acts as a suppressive signal for memorization: compared to low-ID sequences, high-ID sequences are less likely to be memorized, particularly in overparameterized models and under sparse exposure. These findings highlight the interaction between scale, exposure, and complexity in shaping memorization.
Related papers
- Entropy-Memorization Law: Evaluating Memorization Difficulty of Data in LLMs [30.55956806927529]
Large Language Models (LLMs) are known to memorize portions of their training data, sometimes reproducing content verbatim when prompted appropriately.<n>We present the Entropy-Memorization Law, which suggests that data entropy is linearly correlated with memorization score.<n>Adopting the same strategy to discover Entropy-Memorization Law, we derive a simple yet effective approach to distinguish training and testing data.
arXiv Detail & Related papers (2025-07-08T14:58:28Z) - A Geometric Framework for Understanding Memorization in Generative Models [11.263296715798374]
Recent work has shown that deep generative models can be capable of memorizing and reproducing training datapoints when deployed.<n>These findings call into question the usability of generative models, especially in light of the legal and privacy risks brought about by memorization.<n>We propose the manifold memorization hypothesis (MMH), a geometric framework which leverages the manifold hypothesis into a clear language in which to reason about memorization.
arXiv Detail & Related papers (2024-10-31T18:09:01Z) - Demystifying Verbatim Memorization in Large Language Models [67.49068128909349]
Large Language Models (LLMs) frequently memorize long sequences verbatim, often with serious legal and privacy implications.
We develop a framework to study verbatim memorization in a controlled setting by continuing pre-training from Pythia checkpoints with injected sequences.
We find that (1) non-trivial amounts of repetition are necessary for verbatim memorization to happen; (2) later (and presumably better) checkpoints are more likely to memorize verbatim sequences, even for out-of-distribution sequences.
arXiv Detail & Related papers (2024-07-25T07:10:31Z) - Uncovering Latent Memories: Assessing Data Leakage and Memorization Patterns in Frontier AI Models [7.50189359952191]
We show that sequences which are not memorized after the first encounter can be "uncovered" throughout the course of training.
The presence of latent memorization presents a challenge for data privacy as memorized sequences may be hidden at the final checkpoint of the model.
We develop a diagnostic test relying on the cross entropy loss to uncover latent memorized sequences with high accuracy.
arXiv Detail & Related papers (2024-06-20T17:56:17Z) - Rethinking LLM Memorization through the Lens of Adversarial Compression [93.13830893086681]
Large language models (LLMs) trained on web-scale datasets raise substantial concerns regarding permissible data usage.
One major question is whether these models "memorize" all their training data or they integrate many data sources in some way more akin to how a human would learn and synthesize information.
We propose the Adversarial Compression Ratio (ACR) as a metric for assessing memorization in LLMs.
arXiv Detail & Related papers (2024-04-23T15:49:37Z) - Exploring Memorization in Fine-tuned Language Models [53.52403444655213]
We conduct the first comprehensive analysis to explore language models' memorization during fine-tuning across tasks.
Our studies with open-sourced and our own fine-tuned LMs across various tasks indicate that memorization presents a strong disparity among different fine-tuning tasks.
We provide an intuitive explanation of this task disparity via sparse coding theory and unveil a strong correlation between memorization and attention score distribution.
arXiv Detail & Related papers (2023-10-10T15:41:26Z) - Quantifying and Analyzing Entity-level Memorization in Large Language
Models [4.59914731734176]
Large language models (LLMs) have been proven capable of memorizing their training data.
Privacy risks arising from memorization have attracted increasing attention.
We propose a fine-grained, entity-level definition to quantify memorization with conditions and metrics closer to real-world scenarios.
arXiv Detail & Related papers (2023-08-30T03:06:47Z) - Preventing Verbatim Memorization in Language Models Gives a False Sense
of Privacy [91.98116450958331]
We argue that verbatim memorization definitions are too restrictive and fail to capture more subtle forms of memorization.
Specifically, we design and implement an efficient defense that perfectly prevents all verbatim memorization.
We conclude by discussing potential alternative definitions and why defining memorization is a difficult yet crucial open question for neural language models.
arXiv Detail & Related papers (2022-10-31T17:57:55Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
We show that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization.
Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabelled in-distribution examples.
arXiv Detail & Related papers (2022-10-17T20:15:24Z) - Quantifying Memorization Across Neural Language Models [61.58529162310382]
Large language models (LMs) have been shown to memorize parts of their training data, and when prompted appropriately, they will emit the memorized data verbatim.
This is undesirable because memorization violates privacy (exposing user data), degrades utility (repeated easy-to-memorize text is often low quality), and hurts fairness (some texts are memorized over others).
We describe three log-linear relationships that quantify the degree to which LMs emit memorized training data.
arXiv Detail & Related papers (2022-02-15T18:48:31Z) - Counterfactual Memorization in Neural Language Models [91.8747020391287]
Modern neural language models that are widely used in various NLP tasks risk memorizing sensitive information from their training data.
An open question in previous studies of language model memorization is how to filter out "common" memorization.
We formulate a notion of counterfactual memorization which characterizes how a model's predictions change if a particular document is omitted during training.
arXiv Detail & Related papers (2021-12-24T04:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.