論文の概要: The Four Color Theorem for Cell Instance Segmentation
- arxiv url: http://arxiv.org/abs/2506.09724v1
- Date: Wed, 11 Jun 2025 13:33:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:03.00707
- Title: The Four Color Theorem for Cell Instance Segmentation
- Title(参考訳): セルインスタンスセグメンテーションのための4色理論
- Authors: Ye Zhang, Yu Zhou, Yifeng Wang, Jun Xiao, Ziyue Wang, Yongbing Zhang, Jianxu Chen,
- Abstract要約: 四色定理にインスパイアされた新しいセルインスタンス分割法を提案する。
隣接インスタンスが異なるラベルを受信できるようにする4色符号化方式を提案する。
この再構成は4つの予測クラスで制約付きセマンティックセグメンテーション問題を達成する。
- 参考スコア(独自算出の注目度): 23.738326451097507
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cell instance segmentation is critical to analyzing biomedical images, yet accurately distinguishing tightly touching cells remains a persistent challenge. Existing instance segmentation frameworks, including detection-based, contour-based, and distance mapping-based approaches, have made significant progress, but balancing model performance with computational efficiency remains an open problem. In this paper, we propose a novel cell instance segmentation method inspired by the four-color theorem. By conceptualizing cells as countries and tissues as oceans, we introduce a four-color encoding scheme that ensures adjacent instances receive distinct labels. This reformulation transforms instance segmentation into a constrained semantic segmentation problem with only four predicted classes, substantially simplifying the instance differentiation process. To solve the training instability caused by the non-uniqueness of four-color encoding, we design an asymptotic training strategy and encoding transformation method. Extensive experiments on various modes demonstrate our approach achieves state-of-the-art performance. The code is available at https://github.com/zhangye-zoe/FCIS.
- Abstract(参考訳): 細胞インスタンスのセグメンテーションは、バイオメディカルな画像を分析するのに重要であるが、強く触れる細胞を正確に区別することは、依然として永続的な課題である。
検出ベース、輪郭ベース、距離マッピングベースのアプローチを含む既存のインスタンスセグメンテーションフレームワークは大きな進歩を遂げているが、モデル性能と計算効率のバランスは依然として未解決の問題である。
本稿では,4色定理に着想を得た新しいセルインスタンス分割法を提案する。
細胞を国として、組織を海として概念化することにより、隣接するインスタンスが異なるラベルを受信できるようにする4色符号化方式を導入する。
この再構成は、インスタンスのセグメンテーションを4つの予測クラスで制約付きセグメンテーション問題に変換し、インスタンスの区別プロセスを著しく単純化する。
4色符号化の非特異性に起因するトレーニング不安定性を解決するために,漸近的トレーニング戦略と符号化変換法を設計する。
様々なモードでの大規模な実験は、我々のアプローチが最先端の性能を達成することを実証している。
コードはhttps://github.com/zhangye-zoe/FCISで公開されている。
関連論文リスト
- Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
核セグメンテーションのための拡散法を初めて導入する。
このアイデアは、多数のラベル付き画像を合成し、セグメンテーションモデルを訓練することを目的としている。
実験の結果,10%のラベル付き実データセットを合成サンプルで拡張することにより,同等のセグメンテーション結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-22T06:16:16Z) - Dual-View Selective Instance Segmentation Network for Unstained Live
Adherent Cells in Differential Interference Contrast Images [11.762090096790823]
接着細胞は低コントラスト構造、フェーディングエッジ、不規則な形態を有する。
DIC画像中の非定常付着細胞をセグメント化するための新しいディープラーニングアルゴリズムを開発した。
このアルゴリズムは、ベンチマークを23.6%上回る0.555のAP_segmを達成する。
論文 参考訳(メタデータ) (2023-01-27T02:22:33Z) - Doubly Deformable Aggregation of Covariance Matrices for Few-shot
Segmentation [25.387090319723715]
注釈付きサンプルの少ないセマンティックセグメンテーションモデルを訓練することは、実世界の様々な応用に大きな可能性を持っている。
数ショットのセグメンテーションタスクでは、サポートとクエリサンプル間のセマンティック対応を正確に測定する方法が主な課題である。
本稿では,学習可能な共分散行列を変形可能な4次元変換器で集約し,セグメント化マップを効果的に予測する。
論文 参考訳(メタデータ) (2022-07-30T20:41:38Z) - Object-Guided Instance Segmentation With Auxiliary Feature Refinement
for Biological Images [58.914034295184685]
サンプルセグメンテーションは、神経細胞相互作用の研究、植物の表現型化、細胞が薬物治療にどう反応するかを定量的に測定するなど、多くの生物学的応用において非常に重要である。
Boxベースのインスタンスセグメンテーションメソッドは、バウンディングボックスを介してオブジェクトをキャプチャし、各バウンディングボックス領域内で個々のセグメンテーションを実行する。
提案手法は,まずオブジェクトの中心点を検出し,そこから境界ボックスパラメータが予測される。
セグメンテーションブランチは、オブジェクト特徴をガイダンスとして再利用し、同じバウンディングボックス領域内の隣のオブジェクトからターゲットオブジェクトを分離する。
論文 参考訳(メタデータ) (2021-06-14T04:35:36Z) - Deep Gaussian Processes for Few-Shot Segmentation [66.08463078545306]
少数ショットのセグメンテーションは難しい作業であり、いくつかの注釈付きサンプルから一般化可能な表現を抽出する必要がある。
ガウス過程(GP)回帰に基づく数ショット学習者定式化を提案する。
PASCAL-5i と COCO-20i では mIoU スコアが68.1 と 49.8 である。
論文 参考訳(メタデータ) (2021-03-30T17:56:32Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
長尾視覚認識のための分散アライメント戦略を提案する。
次に,二段階学習における一般化された再重み付け法を導入して,事前のクラスバランスをとる。
提案手法は, 4つの認識タスクすべてにおいて, 単純で統一されたフレームワークを用いて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-03-30T14:09:53Z) - CellSegmenter: unsupervised representation learning and instance
segmentation of modular images [0.0]
本稿では,教師なし表現学習とインスタンスセグメンテーションタスクのための構造化された深層生成モデルとアモータイズ推論フレームワークを提案する。
提案した推論アルゴリズムは、再帰的なメカニズムなしで畳み込み並列化されている。
細胞核イメージングデータセットで得られたセグメンテーション結果を示し,高品質なセグメンテーションを実現するための手法の有効性を示した。
論文 参考訳(メタデータ) (2020-11-25T02:10:58Z) - Deep Variational Instance Segmentation [7.334808870313923]
State-of-the-artアルゴリズムは、しばしば2つの別々のステージを使用し、最初の1つはオブジェクトの提案を生成し、もう1つは境界を認識して修正する。
完全畳み込みネットワーク(FCN)を直接利用して,インスタンスラベルを予測する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-22T17:57:49Z) - Split and Expand: An inference-time improvement for Weakly Supervised
Cell Instance Segmentation [71.50526869670716]
本研究では,分割マップのインスタンスへの変換を改善するために,2段階の後処理手順であるSplitとExpandを提案する。
Splitのステップでは,セルの集合をセグメント化マップから個々のセルインスタンスに分割し,セル中心の予測を導出する。
拡張ステップでは、細胞中心予測を用いて、小さな細胞が欠落していることが分かる。
論文 参考訳(メタデータ) (2020-07-21T14:05:09Z) - FDA: Fourier Domain Adaptation for Semantic Segmentation [82.4963423086097]
本稿では,教師なし領域適応の簡易な手法について述べる。一方の低周波スペクトルを他方と交換することにより,音源と対象分布の相違を低減できる。
本手法を意味的セグメンテーション(semantic segmentation, 意味的セグメンテーション, 意味的セグメンテーション)で説明する。
以上の結果から,より高度な手法が学習に苦しむデータにおいて,単純な手順であってもニュアンス変動を低減できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-04-11T22:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。