A Weighted Loss Approach to Robust Federated Learning under Data Heterogeneity
- URL: http://arxiv.org/abs/2506.09824v2
- Date: Thu, 12 Jun 2025 09:27:22 GMT
- Title: A Weighted Loss Approach to Robust Federated Learning under Data Heterogeneity
- Authors: Johan Erbani, Sonia Ben Mokhtar, Pierre-Edouard Portier, Elod Egyed-Zsigmond, Diana Nurbakova,
- Abstract summary: Federated learning (FL) enables multiple data holders to collaboratively train a machine learning model without sharing their training data with external parties.<n>While FL seems appealing from a privacy perspective, it opens a number of threats from a security perspective as (Byzantine) participants can contribute poisonous gradients (or model parameters) harming model convergence.<n>We introduce the Worker Labelement Loss (WoLA), a weighted loss that aligns honest worker gradients despite data heterogeneity.
- Score: 2.6355823502823195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is a machine learning paradigm that enables multiple data holders to collaboratively train a machine learning model without sharing their training data with external parties. In this paradigm, workers locally update a model and share with a central server their updated gradients (or model parameters). While FL seems appealing from a privacy perspective, it opens a number of threats from a security perspective as (Byzantine) participants can contribute poisonous gradients (or model parameters) harming model convergence. Byzantine-resilient FL addresses this issue by ensuring that the training proceeds as if Byzantine participants were absent. Towards this purpose, common strategies ignore outlier gradients during model aggregation, assuming that Byzantine gradients deviate more from honest gradients than honest gradients do from each other. However, in heterogeneous settings, honest gradients may differ significantly, making it difficult to distinguish honest outliers from Byzantine ones. In this paper, we introduce the Worker Label Alignement Loss (WoLA), a weighted loss that aligns honest worker gradients despite data heterogeneity, which facilitates the identification of Byzantines' gradients. This approach significantly outperforms state-of-the-art methods in heterogeneous settings. In this paper, we provide both theoretical insights and empirical evidence of its effectiveness.
Related papers
- Robust Asymmetric Heterogeneous Federated Learning with Corrupted Clients [60.22876915395139]
This paper studies a challenging robust federated learning task with model heterogeneous and data corrupted clients.<n>Data corruption is unavoidable due to factors such as random noise, compression artifacts, or environmental conditions in real-world deployment.<n>We propose a novel Robust Asymmetric Heterogeneous Federated Learning framework to address these issues.
arXiv Detail & Related papers (2025-03-12T09:52:04Z) - Byzantine Robustness and Partial Participation Can Be Achieved at Once: Just Clip Gradient Differences [61.74021364776313]
Distributed learning has emerged as a leading paradigm for training large machine learning models.
In real-world scenarios, participants may be unreliable or malicious, posing a significant challenge to the integrity and accuracy of the trained models.
We propose the first distributed method with client sampling and provable tolerance to Byzantine workers.
arXiv Detail & Related papers (2023-11-23T17:50:30Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Byzantine-Robust Learning on Heterogeneous Data via Gradient Splitting [58.91947205027892]
Federated learning has exhibited vulnerabilities to Byzantine attacks.
Byzantine attackers can send arbitrary gradients to a central server to destroy the convergence and performance of the global model.
A wealth of robust AGgregation Rules (AGRs) have been proposed to defend against Byzantine attacks.
arXiv Detail & Related papers (2023-02-13T03:31:50Z) - Mixed Precision Quantization to Tackle Gradient Leakage Attacks in
Federated Learning [1.7205106391379026]
Federated Learning (FL) enables collaborative model building among a large number of participants without the need for explicit data sharing.
This approach shows vulnerabilities when privacy inference attacks are applied to it.
In particular, in the event of a gradient leakage attack, which has a higher success rate in retrieving sensitive data from the model gradients, FL models are at higher risk due to the presence of communication in their inherent architecture.
arXiv Detail & Related papers (2022-10-22T04:24:32Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - An Equivalence Between Data Poisoning and Byzantine Gradient Attacks [5.601217969637838]
"Byzantine" literature considers a strong threat model where workers can report arbitrary gradients to a parameter server.
We show a surprising equivalence between this model and data poisoning, a threat considered much more realistic.
arXiv Detail & Related papers (2022-02-17T10:53:52Z) - Byzantine-robust Federated Learning through Collaborative Malicious
Gradient Filtering [32.904425716385575]
We show that element-wise sign of gradient vector can provide valuable insight in detecting model poisoning attacks.
We propose a novel approach called textitSignGuard to enable Byzantine-robust federated learning through collaborative malicious gradient filtering.
arXiv Detail & Related papers (2021-09-13T11:15:15Z) - A Novel Attribute Reconstruction Attack in Federated Learning [7.426857207652392]
Federated learning (FL) emerged as a promising learning paradigm to enable a multitude of participants to construct a joint ML model without exposing their private training data.
Existing FL designs have been shown to exhibit vulnerabilities which can be exploited by adversaries both within and outside of the system to compromise data privacy.
We develop a more effective and efficient gradient matching based method called cos-matching to reconstruct the training data attributes.
arXiv Detail & Related papers (2021-08-16T05:57:01Z) - LEGATO: A LayerwisE Gradient AggregaTiOn Algorithm for Mitigating
Byzantine Attacks in Federated Learning [10.667821026727573]
Federated learning has arisen as a mechanism to allow multiple participants to collaboratively train a model without sharing their data.
We introduce LayerwisE Gradient AggregatTiOn (LEGATO), an aggregation algorithm that is, by contrast, scalable and generalizable.
We show that LEGATO is more computationally efficient than multiple state-of-the-art techniques and more generally robust across a variety of attack settings in practice.
arXiv Detail & Related papers (2021-07-26T21:34:45Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Unbiased Risk Estimators Can Mislead: A Case Study of Learning with
Complementary Labels [92.98756432746482]
We study a weakly supervised problem called learning with complementary labels.
We show that the quality of gradient estimation matters more in risk minimization.
We propose a novel surrogate complementary loss(SCL) framework that trades zero bias with reduced variance.
arXiv Detail & Related papers (2020-07-05T04:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.