EditInspector: A Benchmark for Evaluation of Text-Guided Image Edits
- URL: http://arxiv.org/abs/2506.09988v1
- Date: Wed, 11 Jun 2025 17:58:25 GMT
- Title: EditInspector: A Benchmark for Evaluation of Text-Guided Image Edits
- Authors: Ron Yosef, Moran Yanuka, Yonatan Bitton, Dani Lischinski,
- Abstract summary: We introduce EditInspector, a novel benchmark for evaluation of text-guided image edits.<n>We leverage EditInspector to evaluate the performance of state-of-the-art (SoTA) vision and language models in assessing edits.<n>Our findings indicate that current models struggle to evaluate edits comprehensively and frequently hallucinate when describing the changes.
- Score: 22.762414256693265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-guided image editing, fueled by recent advancements in generative AI, is becoming increasingly widespread. This trend highlights the need for a comprehensive framework to verify text-guided edits and assess their quality. To address this need, we introduce EditInspector, a novel benchmark for evaluation of text-guided image edits, based on human annotations collected using an extensive template for edit verification. We leverage EditInspector to evaluate the performance of state-of-the-art (SoTA) vision and language models in assessing edits across various dimensions, including accuracy, artifact detection, visual quality, seamless integration with the image scene, adherence to common sense, and the ability to describe edit-induced changes. Our findings indicate that current models struggle to evaluate edits comprehensively and frequently hallucinate when describing the changes. To address these challenges, we propose two novel methods that outperform SoTA models in both artifact detection and difference caption generation.
Related papers
- Beyond Editing Pairs: Fine-Grained Instructional Image Editing via Multi-Scale Learnable Regions [20.617718631292696]
We develop a novel paradigm for instruction-driven image editing that leverages widely available and enormous text-image pairs.<n>Our approach introduces a multi-scale learnable region to localize and guide the editing process.<n>By treating the alignment between images and their textual descriptions as supervision and learning to generate task-specific editing regions, our method achieves high-fidelity, precise, and instruction-consistent image editing.
arXiv Detail & Related papers (2025-05-25T22:40:59Z) - GIE-Bench: Towards Grounded Evaluation for Text-Guided Image Editing [60.66800567924348]
We introduce a new benchmark designed to evaluate text-guided image editing models.<n>The benchmark includes over 1000 high-quality editing examples across 20 diverse content categories.<n>We conduct a large-scale study comparing GPT-Image-1 against several state-of-the-art editing models.
arXiv Detail & Related papers (2025-05-16T17:55:54Z) - DCEdit: Dual-Level Controlled Image Editing via Precisely Localized Semantics [71.78350994830885]
We present a novel approach to improving text-guided image editing using diffusion-based models.<n>Our method uses visual and textual self-attention to enhance the cross-attention map, which can serve as a regional cues to improve editing performance.<n>To fully compare our methods with other DiT-based approaches, we construct the RW-800 benchmark, featuring high resolution images, long descriptive texts, real-world images, and a new text editing task.
arXiv Detail & Related papers (2025-03-21T02:14:03Z) - Vision-guided and Mask-enhanced Adaptive Denoising for Prompt-based Image Editing [28.904419606450876]
We present a Vision-guided and Mask-enhanced Adaptive Editing (ViMAEdit) method with three key novel designs.
First, we propose to leverage image embeddings as explicit guidance to enhance the conventional textual prompt-based denoising process.
Second, we devise a self-attention-guided iterative editing area grounding strategy.
arXiv Detail & Related papers (2024-10-14T13:41:37Z) - Customize your NeRF: Adaptive Source Driven 3D Scene Editing via
Local-Global Iterative Training [61.984277261016146]
We propose a CustomNeRF model that unifies a text description or a reference image as the editing prompt.
To tackle the first challenge, we propose a Local-Global Iterative Editing (LGIE) training scheme that alternates between foreground region editing and full-image editing.
For the second challenge, we also design a class-guided regularization that exploits class priors within the generation model to alleviate the inconsistency problem.
arXiv Detail & Related papers (2023-12-04T06:25:06Z) - Optimisation-Based Multi-Modal Semantic Image Editing [58.496064583110694]
We propose an inference-time editing optimisation to accommodate multiple editing instruction types.
By allowing to adjust the influence of each loss function, we build a flexible editing solution that can be adjusted to user preferences.
We evaluate our method using text, pose and scribble edit conditions, and highlight our ability to achieve complex edits.
arXiv Detail & Related papers (2023-11-28T15:31:11Z) - Object-aware Inversion and Reassembly for Image Editing [61.19822563737121]
We propose Object-aware Inversion and Reassembly (OIR) to enable object-level fine-grained editing.
We use our search metric to find the optimal inversion step for each editing pair when editing an image.
Our method achieves superior performance in editing object shapes, colors, materials, categories, etc., especially in multi-object editing scenarios.
arXiv Detail & Related papers (2023-10-18T17:59:02Z) - LEDITS: Real Image Editing with DDPM Inversion and Semantic Guidance [0.0]
LEDITS is a combined lightweight approach for real-image editing, incorporating the Edit Friendly DDPM inversion technique with Semantic Guidance.
This approach achieves versatile edits, both subtle and extensive as well as alterations in composition and style, while requiring no optimization nor extensions to the architecture.
arXiv Detail & Related papers (2023-07-02T09:11:09Z) - Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image
Inpainting [53.708523312636096]
We present Imagen Editor, a cascaded diffusion model built, by fine-tuning on text-guided image inpainting.
edits are faithful to the text prompts, which is accomplished by using object detectors to propose inpainting masks during training.
To improve qualitative and quantitative evaluation, we introduce EditBench, a systematic benchmark for text-guided image inpainting.
arXiv Detail & Related papers (2022-12-13T21:25:11Z) - Improving Iterative Text Revision by Learning Where to Edit from Other
Revision Tasks [11.495407637511878]
Iterative text revision improves text quality by fixing grammatical errors, rephrasing for better readability or contextual appropriateness, or reorganizing sentence structures throughout a document.
Most recent research has focused on understanding and classifying different types of edits in the iterative revision process from human-written text.
We aim to build an end-to-end text revision system that can iteratively generate helpful edits by explicitly detecting editable spans with their corresponding edit intents.
arXiv Detail & Related papers (2022-12-02T18:10:43Z) - Understanding Iterative Revision from Human-Written Text [10.714872525208385]
IteraTeR is the first large-scale, multi-domain, edit-intention annotated corpus of iteratively revised text.
We better understand the text revision process, making vital connections between edit intentions and writing quality.
arXiv Detail & Related papers (2022-03-08T01:47:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.