Flipping Against All Odds: Reducing LLM Coin Flip Bias via Verbalized Rejection Sampling
- URL: http://arxiv.org/abs/2506.09998v1
- Date: Wed, 11 Jun 2025 17:59:58 GMT
- Title: Flipping Against All Odds: Reducing LLM Coin Flip Bias via Verbalized Rejection Sampling
- Authors: Tim Z. Xiao, Johannes Zenn, Zhen Liu, Weiyang Liu, Robert Bamler, Bernhard Schölkopf,
- Abstract summary: Large language models (LLMs) can often accurately describe probability distributions using natural language.<n>This mismatch limits their use in tasks requiring reliableity, such as Monte Carlo methods, agent-based simulations, and randomized decision-making.<n>We introduce Verbalized Rejection Sampling (VRS), a natural-language adaptation of classical rejection sampling.
- Score: 59.133428586090226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) can often accurately describe probability distributions using natural language, yet they still struggle to generate faithful samples from them. This mismatch limits their use in tasks requiring reliable stochasticity, such as Monte Carlo methods, agent-based simulations, and randomized decision-making. We investigate this gap between knowledge and sampling in the context of Bernoulli distributions. We introduce Verbalized Rejection Sampling (VRS), a natural-language adaptation of classical rejection sampling that prompts the LLM to reason about and accept or reject proposed samples. Despite relying on the same Bernoulli mechanism internally, VRS substantially reduces sampling bias across models. We provide theoretical analysis showing that, under mild assumptions, VRS improves over direct sampling, with gains attributable to both the algorithm and prompt design. More broadly, our results show how classical probabilistic tools can be verbalized and embedded into LLM workflows to improve reliability, without requiring access to model internals or heavy prompt engineering.
Related papers
- Mitigating Spurious Correlations in LLMs via Causality-Aware Post-Training [57.03005244917803]
Large language models (LLMs) often fail on out-of-distribution (OOD) samples due to spurious correlations acquired during pre-training.<n>Here, we aim to mitigate such spurious correlations through causality-aware post-training (CAPT)<n> Experiments on the formal causal inference benchmark CLadder and the logical reasoning dataset PrOntoQA show that 3B-scale language models fine-tuned with CAPT can outperform both traditional SFT and larger LLMs on in-distribution (ID) and OOD tasks.
arXiv Detail & Related papers (2025-06-11T06:30:28Z) - Statistical Hypothesis Testing for Auditing Robustness in Language Models [49.1574468325115]
We introduce distribution-based perturbation analysis, a framework that reformulates perturbation analysis as a frequentist hypothesis testing problem.<n>We construct empirical null and alternative output distributions within a low-dimensional semantic similarity space via Monte Carlo sampling.<n>We show how we can quantify response changes, measure true/false positive rates, and evaluate alignment with reference models.
arXiv Detail & Related papers (2025-06-09T17:11:07Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Do LLMs Play Dice? Exploring Probability Distribution Sampling in Large Language Models for Behavioral Simulation [73.58618024960968]
An increasing number of studies are employing large language models (LLMs) as agents to emulate the sequential decision-making processes of humans.<n>This arouses curiosity regarding the capacity of LLM agents to comprehend probability distributions.<n>Our analysis indicates that LLM agents can understand probabilities, but they struggle with probability sampling.
arXiv Detail & Related papers (2024-04-13T16:59:28Z) - Conformal Language Modeling [61.94417935386489]
We propose a novel approach to conformal prediction for generative language models (LMs)
Standard conformal prediction produces prediction sets with rigorous, statistical guarantees.
We demonstrate the promise of our approach on multiple tasks in open-domain question answering, text summarization, and radiology report generation.
arXiv Detail & Related papers (2023-06-16T21:55:08Z) - Efficient Propagation of Uncertainty via Reordering Monte Carlo Samples [0.7087237546722617]
Uncertainty propagation is a technique to determine model output uncertainties based on the uncertainty in its input variables.
In this work, we investigate the hypothesis that while all samples are useful on average, some samples must be more useful than others.
We introduce a methodology to adaptively reorder MC samples and show how it results in reduction of computational expense of UP processes.
arXiv Detail & Related papers (2023-02-09T21:28:15Z) - Sampling from Discrete Energy-Based Models with Quality/Efficiency
Trade-offs [3.491202838583993]
Energy-Based Models (EBMs) allow for extremely flexible specifications of probability distributions.
They do not provide a mechanism for obtaining exact samples from these distributions.
We propose a new approximate sampling technique, Quasi Rejection Sampling (QRS), that allows for a trade-off between sampling efficiency and sampling quality.
arXiv Detail & Related papers (2021-12-10T17:51:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.