論文の概要: LLMs Caught in the Crossfire: Malware Requests and Jailbreak Challenges
- arxiv url: http://arxiv.org/abs/2506.10022v1
- Date: Mon, 09 Jun 2025 12:02:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:22.316383
- Title: LLMs Caught in the Crossfire: Malware Requests and Jailbreak Challenges
- Title(参考訳): LLMの銃乱射事件:マルウェアの要求と脱獄問題
- Authors: Haoyang Li, Huan Gao, Zhiyuan Zhao, Zhiyu Lin, Junyu Gao, Xuelong Li,
- Abstract要約: 悪意のあるコード生成のための3,520のジェイルブレイクプロンプトを含むベンチマークデータセットであるMalwareBenchを提案する。
M MalwareBenchは、11のJailbreakメソッドと29のコード機能カテゴリをカバーする、320の手作業による悪意のあるコード生成要件に基づいている。
実験の結果、LLMは悪意のあるコード生成要求を拒否する限られた能力を示し、複数のjailbreakメソッドを組み合わせることで、モデルのセキュリティ機能をさらに低下させることが示された。
- 参考スコア(独自算出の注目度): 70.85114705489222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread adoption of Large Language Models (LLMs) has heightened concerns about their security, particularly their vulnerability to jailbreak attacks that leverage crafted prompts to generate malicious outputs. While prior research has been conducted on general security capabilities of LLMs, their specific susceptibility to jailbreak attacks in code generation remains largely unexplored. To fill this gap, we propose MalwareBench, a benchmark dataset containing 3,520 jailbreaking prompts for malicious code-generation, designed to evaluate LLM robustness against such threats. MalwareBench is based on 320 manually crafted malicious code generation requirements, covering 11 jailbreak methods and 29 code functionality categories. Experiments show that mainstream LLMs exhibit limited ability to reject malicious code-generation requirements, and the combination of multiple jailbreak methods further reduces the model's security capabilities: specifically, the average rejection rate for malicious content is 60.93%, dropping to 39.92% when combined with jailbreak attack algorithms. Our work highlights that the code security capabilities of LLMs still pose significant challenges.
- Abstract(参考訳): LLM(Large Language Models)の普及により、セキュリティ、特に悪質なアウトプットを生成するために工芸的なプロンプトを活用するジェイルブレイク攻撃に対する脆弱性に対する懸念が高まっている。
LLMの一般的なセキュリティ機能に関する以前の研究は行われているが、コード生成におけるジェイルブレイク攻撃に対する具体的な感受性は、まだ明らかにされていない。
このギャップを埋めるために、悪意のあるコード生成のための3,520のジェイルブレイクプロンプトを含むベンチマークデータセットであるMalwareBenchを提案する。
MalwareBenchは、11のJailbreakメソッドと29のコード機能カテゴリをカバーする、320の手作業による悪意のあるコード生成要件に基づいている。
実験では、主要なLCMは悪意のあるコード生成要求を拒否する能力に制限があることが示され、複数のジェイルブレイク手法を組み合わせることで、モデルのセキュリティ能力はさらに低下している。
私たちの研究は、LLMのコードセキュリティ機能が依然として重大な課題を生んでいることを強調しています。
関連論文リスト
- JBShield: Defending Large Language Models from Jailbreak Attacks through Activated Concept Analysis and Manipulation [22.75124155879712]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に弱いままである。
本稿では,JBShield-DとJBShield-Mの2つの主要コンポーネントからなる総合的ジェイルブレイク防御フレームワークJBShieldを提案する。
論文 参考訳(メタデータ) (2025-02-11T13:50:50Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
私たちは、jailbreak攻撃から防御するために設計された方法であるLayer-AdvPatcherを紹介します。
私たちは、自己拡張データセットを通じて、大規模言語モデル内の特定のレイヤにパッチを適用するために、未学習の戦略を使用します。
我々の枠組みは、脱獄攻撃の有害性と攻撃の成功率を減らす。
論文 参考訳(メタデータ) (2025-01-05T19:06:03Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
本稿では、以前LLMセキュリティで見過ごされていた特別なトークンを活用して、ジェイルブレイク攻撃を改善する仮想コンテキストを提案する。
総合的な評価によると、仮想コンテキストによるジェイルブレイク攻撃は、4つの広く使われているジェイルブレイク手法の成功率を約40%向上させることができる。
論文 参考訳(メタデータ) (2024-06-28T11:35:54Z) - Bag of Tricks: Benchmarking of Jailbreak Attacks on LLMs [13.317364896194903]
大規模言語モデル(LLM)は、ゼロショット方式で複雑なタスクを実行する上で重要な機能を示している。
LLMはジェイルブレイク攻撃の影響を受けやすく、有害な出力を生成するために操作することができる。
論文 参考訳(メタデータ) (2024-06-13T17:01:40Z) - JailBreakV: A Benchmark for Assessing the Robustness of MultiModal Large Language Models against Jailbreak Attacks [24.69275959735538]
本稿では,大規模言語モデルのジェイルブレイクを成功させる手法が,MLLMのジェイルブレークに等しく有効かどうかを検討する。
MLLM への LLM ジェイルブレイク手法の転送性を評価するための先駆的なベンチマークである JailBreakV-28K を紹介する。
LLMの高度なジェイルブレイク攻撃と、最近のMLLMのジェイルブレイク攻撃によるイメージベースのジェイルブレイク入力により、20000のテキストベースのジェイルブレイクプロンプトを生成します。
論文 参考訳(メタデータ) (2024-04-03T19:23:18Z) - SafeDecoding: Defending against Jailbreak Attacks via Safety-Aware Decoding [35.750885132167504]
我々は,大規模言語モデル(LLM)の安全性を意識したデコーディング戦略であるSafeDecodingを導入し,ユーザクエリに対する有用かつ無害な応答を生成する。
この結果から,SafeDecodingは,ユーザクエリに対する応答の利便性を損なうことなく,攻撃成功率やジェイルブレイク攻撃の有害性を著しく低下させることがわかった。
論文 参考訳(メタデータ) (2024-02-14T06:54:31Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z) - "Do Anything Now": Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large Language Models [50.22128133926407]
我々は2022年12月から2023年12月までの1,405件の脱獄プロンプトを包括的に分析する。
131のjailbreakコミュニティを特定し,Jailbreakプロンプトの特徴とその主要な攻撃戦略を明らかにする。
また,ChatGPT (GPT-3.5) と GPT-4 の攻撃成功率 0.95 を達成できる5つの有効なジェイルブレイクプロンプトを同定した。
論文 参考訳(メタデータ) (2023-08-07T16:55:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。