Entanglement Holography in Quantum Phases via Twisted Rényi-N Correlators
- URL: http://arxiv.org/abs/2506.10076v1
- Date: Wed, 11 Jun 2025 18:00:22 GMT
- Title: Entanglement Holography in Quantum Phases via Twisted Rényi-N Correlators
- Authors: Pablo Sala, Frank Pollmann, Masaki Oshikawa, Yizhi You,
- Abstract summary: We introduce a holographic framework for the entanglement Hamiltonian in symmetry-protected topological phases with area-law entanglement.<n>We show that the reduced density matrix $rho propto e-H_e$ can be treated as a lower-dimensional mixed state.<n>As a colloary, we generalized the framework of twisted R'enyi-N correlator to thermal states and open quantum systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a holographic framework for the entanglement Hamiltonian in symmetry-protected topological (SPT) phases with area-law entanglement, whose reduced density matrix $\rho \propto e^{-H_e}$ can be treated as a lower-dimensional mixed state. By replicating $\rho$, we reconstruct the fixed-point SPT wavefunction, establishing an exact correspondence between the bulk strange correlator of the (d+1)-dimensional SPT state and the twisted R\'enyi-N operator of the d-dimensional reduced density matrix. Notably, the reduced density matrix exhibits long-range or quasi-long-range order along the replica direction, revealing a universal entanglement feature in SPT phases. As a colloary, we generalized the framework of twisted R\'enyi-N correlator to thermal states and open quantum systems, providing an alternative formulation of the Lieb-Schultz-Mattis theorem, applicable to both closed and open systems. Finally, we extend our protocol to mixed-state SPT phases and introduce new quantum information metrics -- twisted R\'enyi-N correlators of the surgery operator -- to characterize the topology of mixed states.
Related papers
- Spiral renormalization group flow and universal entanglement spectrum of the non-Hermitian 5-state Potts model [0.06597195879147556]
We show that tensor network algorithms are still capable of simulating non-Hermitian theories.<n>We reconstruct the full boundary CCFT spectrum through the entanglement Hamiltonian encoded in the ground state.
arXiv Detail & Related papers (2025-07-19T19:46:16Z) - Symmetrizing the Constraints -- Density Matrix Renormalization Group for Constrained Lattice Models [0.40964539027092917]
We develop a density matrix renormalization group (DMRG) algorithm for constrained quantum lattice models.<n>Such an implementation allows us to investigate a quantum dimer model in DMRG for any lattice geometry wrapped around a cylinder with substantial circumference.
arXiv Detail & Related papers (2025-04-05T03:05:11Z) - Boundary anomaly detection in two-dimensional subsystem symmetry-protected topological phases [20.518529676631122]
We generalize the topological response theory to detect the boundary anomalies of linear subsystem symmetries.<n>This approach allows us to distinguish different subsystem symmetry-protected topological (SSPT) phases and uncover new ones.<n>Our work provides a numerical method to detect quantum anomalies of subsystem symmetries, offering new insights into the study of topological phases.
arXiv Detail & Related papers (2024-12-10T14:53:54Z) - Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation [41.13597666007784]
Dimensionality reduction (DR) offers a useful representation of complex high-dimensional data.
Recent DR methods focus on hyperbolic geometry to derive a faithful low-dimensional representation of hierarchical data.
This paper presents hGP-LVMs to embed high-dimensional hierarchical data with implicit continuity via nonparametric estimation.
arXiv Detail & Related papers (2024-10-22T05:07:30Z) - Holographic View of Mixed-State Symmetry-Protected Topological Phases in Open Quantum Systems [4.416740212467273]
We establish a holographic duality between d-dimensional mixed-state symmetry-protected topological phases (mSPTs) and (d+1)-dimensional subsystem symmetry-protected topological states (SSPTs)<n>Specifically, we show that the reduced density matrix of the boundary layer of a (d+1)-dimensional SSPT with subsystem symmetry S and global symmetry G corresponds to a d-dimensional mSPT with strong S and weak G symmetries.<n>We discuss several implications of this holographic duality, including a method for preparing intrinsic mSPT states through the duality.
arXiv Detail & Related papers (2024-10-10T17:59:42Z) - Fluctuation-Dissipation Theorem and Information Geometry in Open Quantum Systems [2.203892199657599]
We propose a fluctuation-dissipation theorem in open quantum systems from an information-theoretic perspective.
We define the fidelity susceptibility that measures the sensitivity of the systems under perturbation and relate it to the fidelity correlator that characterizes the correlation behaviors for mixed quantum states.
arXiv Detail & Related papers (2024-09-27T17:45:02Z) - Intrinsic mixed-state SPT from modulated symmetries and hierarchical structure of anomaly [0.0]
We introduce a class of intrinsic symmetry-protected topological mixed-state in open quantum systems.
The mSPT phases cannot be realized as the ground states of a gapped Hamiltonian under thermal equilibrium.
A detailed comparison of the hierarchical structure of boundary anomalies in both pure and mixed states is presented.
arXiv Detail & Related papers (2024-07-11T18:01:37Z) - Interaction-Force Transport Gradient Flows [45.05400562268213]
This paper presents a new gradient flow dissipation geometry over non-negative and probability measures.
Using a precise connection between the Hellinger geometry and the maximum mean discrepancy (MMD), we propose the interaction-force transport (IFT) gradient flows.
arXiv Detail & Related papers (2024-05-27T11:46:14Z) - Tensor product random matrix theory [39.58317527488534]
We introduce a real-time field theory approach to the evolution of correlated quantum systems.
We describe the full range of such crossover dynamics, from initial product states to a maximum entropy ergodic state.
arXiv Detail & Related papers (2024-04-16T21:40:57Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Cyclic nonlinear interferometry with entangled non-Gaussian spin states [16.664397200920767]
We propose an efficient nonlinear readout scheme for entangled non-Gaussian spin states (ENGSs)
We focus on two well-known spin models of twist-and-turn (TNT) and two-axis-counter-twisting (TACT), where ENGS can be generated by spin dynamics starting from unstable fixed points.
arXiv Detail & Related papers (2023-04-18T09:59:17Z) - Three-fold way of entanglement dynamics in monitored quantum circuits [68.8204255655161]
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles.
We obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements.
arXiv Detail & Related papers (2022-01-28T17:21:15Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.