論文の概要: Analyzing Emotions in Bangla Social Media Comments Using Machine Learning and LIME
- arxiv url: http://arxiv.org/abs/2506.10154v1
- Date: Wed, 11 Jun 2025 20:15:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:22.434166
- Title: Analyzing Emotions in Bangla Social Media Comments Using Machine Learning and LIME
- Title(参考訳): 機械学習とLIMEを用いたバングラソーシャルメディアコメントにおける感情の分析
- Authors: Bidyarthi Paul, SM Musfiqur Rahman, Dipta Biswas, Md. Ziaul Hasan, Md. Zahid Hossain,
- Abstract要約: 本研究では,EmoNoBaデータセットからの22,698のソーシャルメディアコメントを用いた感情分析を行った。
我々は、線形SVM、KNN、ランダムフォレストといった機械学習モデルを用いて、TF-IDFベクトル化器からn-gramのデータを得る。
また,PCAが次元の減少にどのように影響するかについても検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research on understanding emotions in written language continues to expand, especially for understudied languages with distinctive regional expressions and cultural features, such as Bangla. This study examines emotion analysis using 22,698 social media comments from the EmoNoBa dataset. For language analysis, we employ machine learning models: Linear SVM, KNN, and Random Forest with n-gram data from a TF-IDF vectorizer. We additionally investigated how PCA affects the reduction of dimensionality. Moreover, we utilized a BiLSTM model and AdaBoost to improve decision trees. To make our machine learning models easier to understand, we used LIME to explain the predictions of the AdaBoost classifier, which uses decision trees. With the goal of advancing sentiment analysis in languages with limited resources, our work examines various techniques to find efficient techniques for emotion identification in Bangla.
- Abstract(参考訳): 文章言語における感情理解の研究は、特にバングラのような独特の地域表現と文化的特徴を持つ未調査言語において、拡大を続けている。
本研究では,EmoNoBaデータセットからの22,698のソーシャルメディアコメントを用いた感情分析を行った。
言語解析には、線形SVM、KNN、ランダムフォレストといった機械学習モデルと、TF-IDFベクトル化器のn-gramデータを用いる。
また,PCAが次元の減少にどのように影響するかについても検討した。
さらに,BiLSTMモデルとAdaBoostを用いて決定木の改良を行った。
機械学習モデルを理解しやすくするために、決定木を使用するAdaBoost分類器の予測を説明するためにLIMEを使用しました。
本研究は,限られた資源を持つ言語における感情分析の進歩を目的として,バングラ語における感情識別のための効率的な手法を探索する。
関連論文リスト
- BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages [93.92804151830744]
BRIGHTERは、28の言語で複数ラベル付き、感情アノテートされたデータセットの集合である。
データ収集とアノテーションプロセスに関する課題を強調します。
BRIGHTERデータセットは、テキストベースの感情認識のギャップに対処するための重要なステップであることを示す。
論文 参考訳(メタデータ) (2025-02-17T15:39:50Z) - Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
言語モデル(LM)の言語能力を評価するための新しいベンチマークであるHolmesを紹介する。
我々は、計算に基づく探索を用いて、異なる言語現象に関するLMの内部表現を調べる。
その結果,近年,他の認知能力からLMの言語能力を引き離す声が上がっている。
論文 参考訳(メタデータ) (2024-04-29T17:58:36Z) - Exploring Tokenization Strategies and Vocabulary Sizes for Enhanced Arabic Language Models [0.0]
本稿では,アラビア語モデルの性能に及ぼすトークン化戦略と語彙サイズの影響について検討する。
本研究は, 語彙サイズがモデルサイズを一定に保ちながら, モデル性能に及ぼす影響を限定的に明らかにした。
論文のレコメンデーションには、方言の課題に対処するためのトークン化戦略の洗練、多様な言語コンテキストにわたるモデルの堅牢性の向上、リッチな方言ベースのアラビア語を含むデータセットの拡大が含まれる。
論文 参考訳(メタデータ) (2024-03-17T07:44:44Z) - Arabic Sentiment Analysis with Noisy Deep Explainable Model [48.22321420680046]
本稿では,アラビア語の感情分類フレームワークを提案する。
提案フレームワークは,局所的な代理説明可能なモデルをトレーニングすることで,特定の予測を説明することができる。
アラビアサデータセットの公開ベンチマーク実験を行った。
論文 参考訳(メタデータ) (2023-09-24T19:26:53Z) - Analysis of the Evolution of Advanced Transformer-Based Language Models:
Experiments on Opinion Mining [0.5735035463793008]
本稿では,最先端のトランスフォーマーに基づく言語モデルの意見マイニングにおける挙動について検討する。
私たちの比較研究は、フォーカスするアプローチに関して、プロダクションエンジニアがリードし、道を開く方法を示しています。
論文 参考訳(メタデータ) (2023-08-07T01:10:50Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
本稿では,REDAffectiveLMと呼ばれる深層学習モデルを用いて,短文文書からの読み手感情検出のための新しい手法を提案する。
コンテクストに特化してリッチ表現に影響を与え, リッチBi-LSTM+Attentionに影響を及ぼすタンデムにおいて, トランスフォーマーに基づく事前学習言語モデルを用いることで, リッチ表現に影響を及ぼす。
論文 参考訳(メタデータ) (2023-01-21T19:28:25Z) - Aspect-Based Sentiment Analysis using Local Context Focus Mechanism with
DeBERTa [23.00810941211685]
Aspect-Based Sentiment Analysis (ABSA)は、感情分析の分野におけるきめ細かいタスクである。
アスペクトベース感性分析問題を解決するための最近のDeBERTaモデル
論文 参考訳(メタデータ) (2022-07-06T03:50:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。