Retrieval of Surface Solar Radiation through Implicit Albedo Recovery from Temporal Context
- URL: http://arxiv.org/abs/2506.10174v1
- Date: Wed, 11 Jun 2025 20:56:35 GMT
- Title: Retrieval of Surface Solar Radiation through Implicit Albedo Recovery from Temporal Context
- Authors: Yael Frischholz, Devis Tuia, Michael Lehning,
- Abstract summary: retrieval of surface solar radiation from satellite imagery critically depends on estimating the background reflectance that a spaceborne sensor would observe under clear-sky conditions.<n>We propose an attention-based emulator for SSR retrieval that implicitly learns to infer clear-sky surface reflectance from raw satellite image sequences.<n>We show that, when provided a sufficiently long temporal context, the model matches the performances of albedo-informed models.
- Score: 3.4306175858244794
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate retrieval of surface solar radiation (SSR) from satellite imagery critically depends on estimating the background reflectance that a spaceborne sensor would observe under clear-sky conditions. Deviations from this baseline can then be used to detect cloud presence and guide radiative transfer models in inferring atmospheric attenuation. Operational retrieval algorithms typically approximate background reflectance using monthly statistics, assuming surface properties vary slowly relative to atmospheric conditions. However, this approach fails in mountainous regions where intermittent snow cover and changing snow surfaces are frequent. We propose an attention-based emulator for SSR retrieval that implicitly learns to infer clear-sky surface reflectance from raw satellite image sequences. Built on the Temporo-Spatial Vision Transformer, our approach eliminates the need for hand-crafted features such as explicit albedo maps or cloud masks. The emulator is trained on instantaneous SSR estimates from the HelioMont algorithm over Switzerland, a region characterized by complex terrain and dynamic snow cover. Inputs include multi-spectral SEVIRI imagery from the Meteosat Second Generation platform, augmented with static topographic features and solar geometry. The target variable is HelioMont's SSR, computed as the sum of its direct and diffuse horizontal irradiance components, given at a spatial resolution of 1.7 km. We show that, when provided a sufficiently long temporal context, the model matches the performances of albedo-informed models, highlighting the model's ability to internally learn and exploit latent surface reflectance dynamics. Our geospatial analysis shows this effect is most powerful in mountainous regions and improves generalization in both simple and complex topographic settings. Code and datasets are publicly available at https://github.com/frischwood/HeMu-dev.git
Related papers
- SatFlow: Generative model based framework for producing High Resolution Gap Free Remote Sensing Imagery [0.0]
We present SatFlow, a generative model-based framework that fuses low-resolution MODIS imagery and Landsat observations to produce frequent, high-resolution, gap-free surface reflectance imagery.<n>Our model, trained via Conditional Flow Matching, demonstrates better performance in generating imagery with preserved structural and spectral integrity.<n>This capability is crucial for downstream applications such as crop phenology tracking, environmental change detection etc.
arXiv Detail & Related papers (2025-02-03T06:40:13Z) - An Atmospheric Correction Integrated LULC Segmentation Model for High-Resolution Satellite Imagery [0.0]
This study employs look-up-table-based radiative transfer simulations to estimate the atmospheric path reflectance and transmittance.
The corrected surface reflectance data were subsequently used in supervised and semi-supervised segmentation models.
arXiv Detail & Related papers (2024-09-09T10:47:39Z) - Icy Moon Surface Simulation and Stereo Depth Estimation for Sampling
Autonomy [4.97538153735235]
We propose a framework for versatile stereo dataset generation that spans the spectrum of bulk photometric properties.
We also focus on a stereo-based visual perception system and evaluate both traditional and deep learning-based algorithms for depth estimation from stereo matching.
Our framework can fit a wide range of hypotheses with respect to visual representations of icy moon terrains.
arXiv Detail & Related papers (2024-01-23T00:06:19Z) - Hi-Map: Hierarchical Factorized Radiance Field for High-Fidelity
Monocular Dense Mapping [51.739466714312805]
We introduce Hi-Map, a novel monocular dense mapping approach based on Neural Radiance Field (NeRF)
Hi-Map is exceptional in its capacity to achieve efficient and high-fidelity mapping using only posed RGB inputs.
arXiv Detail & Related papers (2024-01-06T12:32:25Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
Probabilistic Diffusion Models (PDMs) have recently emerged as a very promising class of generative models.
Here, we leverage PDMs to generate several radar-based satellite image datasets.
We show that PDMs succeed in generating images with complex and realistic structures, but that sampling time remains an issue.
arXiv Detail & Related papers (2023-08-31T16:26:17Z) - Exploring the Application of Large-scale Pre-trained Models on Adverse
Weather Removal [97.53040662243768]
We propose a CLIP embedding module to make the network handle different weather conditions adaptively.
This module integrates the sample specific weather prior extracted by CLIP image encoder together with the distribution specific information learned by a set of parameters.
arXiv Detail & Related papers (2023-06-15T10:06:13Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
We present a novel two-stage network with reflection-aware guidance (RAGNet) for single image reflection removal (SIRR)
RAG can be used (i) to mitigate the effect of reflection from the observation, and (ii) to generate mask in partial convolution for mitigating the effect of deviating from linear combination hypothesis.
Experiments on five commonly used datasets demonstrate the quantitative and qualitative superiority of our RAGNet in comparison to the state-of-the-art SIRR methods.
arXiv Detail & Related papers (2020-12-02T03:14:57Z) - Predicting Landsat Reflectance with Deep Generative Fusion [2.867517731896504]
Public satellite missions are commonly bound to a trade-off between spatial and temporal resolution.
This hinders their potential to assist vegetation monitoring or humanitarian actions.
We probe the potential of deep generative models to produce high-resolution optical imagery by fusing products with different spatial and temporal characteristics.
arXiv Detail & Related papers (2020-11-09T21:06:04Z) - Attentive Weakly Supervised land cover mapping for object-based
satellite image time series data with spatial interpretation [4.549831511476249]
We propose a new deep learning framework, named TASSEL, that is able to intelligently exploit the weak supervision provided by the coarse granularity labels.
Our framework also produces an additional side-information that supports the model interpretability with the aim to make the black box gray.
arXiv Detail & Related papers (2020-04-30T10:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.