LaMAGIC2: Advanced Circuit Formulations for Language Model-Based Analog Topology Generation
- URL: http://arxiv.org/abs/2506.10235v2
- Date: Sat, 26 Jul 2025 01:50:51 GMT
- Title: LaMAGIC2: Advanced Circuit Formulations for Language Model-Based Analog Topology Generation
- Authors: Chen-Chia Chang, Wan-Hsuan Lin, Yikang Shen, Yiran Chen, Xin Zhang,
- Abstract summary: We introduce LaMAGIC2, a succinct float-input canonical formulation with identifier for language model-based analog topology generation.<n>LaMAGIC2 achieves 34% higher success rates under a tight tolerance of 0.01 and 10X lower MSEs compared to a prior method.
- Score: 14.261506284722062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automation of analog topology design is crucial due to customized requirements of modern applications with heavily manual engineering efforts. The state-of-the-art work applies a sequence-to-sequence approach and supervised finetuning on language models to generate topologies given user specifications. However, its circuit formulation is inefficient due to O(|V |2) token length and suffers from low precision sensitivity to numeric inputs. In this work, we introduce LaMAGIC2, a succinct float-input canonical formulation with identifier (SFCI) for language model-based analog topology generation. SFCI addresses these challenges by improving component-type recognition through identifier-based representations, reducing token length complexity to O(|V |), and enhancing numeric precision sensitivity for better performance under tight tolerances. Our experiments demonstrate that LaMAGIC2 achieves 34% higher success rates under a tight tolerance of 0.01 and 10X lower MSEs compared to a prior method. LaMAGIC2 also exhibits better transferability for circuits with more vertices with up to 58.5% improvement. These advancements establish LaMAGIC2 as a robust framework for analog topology generation.
Related papers
- Large-Scale Model Enabled Semantic Communication Based on Robust Knowledge Distillation [53.16213723669751]
Large-scale models (LSMs) can be an effective framework for semantic representation and understanding.<n>However, their direct deployment is often hindered by high computational complexity and resource requirements.<n>This paper proposes a novel knowledge distillation based semantic communication framework.
arXiv Detail & Related papers (2025-08-04T07:47:18Z) - End-to-end fully-binarized network design: from Generic Learned Thermometer to Block Pruning [8.28720658988688]
This article introduces Generic Learned Thermometer (GLT), an encoding technique to improve input data representation for Binary Neural Network (BNN)<n>We show that GLT brings versatility to the BNN by intrinsically performing global tone mapping, enabling significant accuracy gains in practice.
arXiv Detail & Related papers (2025-05-05T13:50:29Z) - Ultra-Resolution Adaptation with Ease [62.56434979517156]
We propose a set of key guidelines for ultra-resolution adaptation termed emphURAE.<n>We show that tuning minor components of the weight matrices outperforms widely-used low-rank adapters when synthetic data are unavailable.<n>Experiments validate that URAE achieves comparable 2K-generation performance to state-of-the-art closed-source models like FLUX1.1 [Pro] Ultra with only 3K samples and 2K iterations.
arXiv Detail & Related papers (2025-03-20T16:44:43Z) - RIRO: Reshaping Inputs, Refining Outputs Unlocking the Potential of Large Language Models in Data-Scarce Contexts [0.0]
Large language models (LLMs) have significantly advanced natural language processing, excelling in areas like text generation, summarization, and question-answering.<n>Despite their capabilities, these models face challenges when fine-tuned on small, domain-specific datasets.<n>We introduce RIRO, a novel two-layer architecture designed to improve performance in data-scarce environments.
arXiv Detail & Related papers (2024-12-15T15:48:37Z) - Predictor-Corrector Enhanced Transformers with Exponential Moving Average Coefficient Learning [73.73967342609603]
We introduce a predictor-corrector learning framework to minimize truncation errors.
We also propose an exponential moving average-based coefficient learning method to strengthen our higher-order predictor.
Our model surpasses a robust 3.8B DeepNet by an average of 2.9 SacreBLEU, using only 1/3 parameters.
arXiv Detail & Related papers (2024-11-05T12:26:25Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models [56.00251589760559]
Large language models (LLMs) can act as gradient priors in a zero-shot setting.<n>We introduce LM-GC, a novel method that integrates LLMs with arithmetic coding.<n>Experiments indicate that LM-GC surpasses existing state-of-the-art lossless compression methods.
arXiv Detail & Related papers (2024-09-26T13:38:33Z) - LaMAGIC: Language-Model-based Topology Generation for Analog Integrated Circuits [17.002169206594793]
We introduce LaMAGIC, a pioneering language model-based topology generation model.
LaMAGIC can efficiently generate an optimized circuit design from the custom specification in a single pass.
LaMAGIC achieves a success rate of up to 96% under a strict tolerance of 0.01.
arXiv Detail & Related papers (2024-07-19T22:51:41Z) - Generative error correction for code-switching speech recognition using
large language models [49.06203730433107]
Code-switching (CS) speech refers to the phenomenon of mixing two or more languages within the same sentence.
We propose to leverage large language models (LLMs) and lists of hypotheses generated by an ASR to address the CS problem.
arXiv Detail & Related papers (2023-10-17T14:49:48Z) - Sentence-Incremental Neural Coreference Resolution [32.13574453443377]
We propose a sentence-incremental neural coreference resolution system which incrementally builds clusters after marking mention boundaries in a shift-reduce method.
The system is aimed at bridging two recent approaches at coreference resolution: (1) state-of-the-art non-incremental models that incur quadratic complexity in document length with high computational cost, and (2) memory network-based models which operate incrementally but do not generalize beyond pronouns.
arXiv Detail & Related papers (2023-05-26T14:00:25Z) - Improving Dual-Encoder Training through Dynamic Indexes for Negative
Mining [61.09807522366773]
We introduce an algorithm that approximates the softmax with provable bounds and that dynamically maintains the tree.
In our study on datasets with over twenty million targets, our approach cuts error by half in relation to oracle brute-force negative mining.
arXiv Detail & Related papers (2023-03-27T15:18:32Z) - E2S2: Encoding-Enhanced Sequence-to-Sequence Pretraining for Language
Understanding and Generation [95.49128988683191]
Sequence-to-sequence (seq2seq) learning is a popular fashion for large-scale pretraining language models.
We propose an encoding-enhanced seq2seq pretraining strategy, namely E2S2.
E2S2 improves the seq2seq models via integrating more efficient self-supervised information into the encoders.
arXiv Detail & Related papers (2022-05-30T08:25:36Z) - Latency Adjustable Transformer Encoder for Language Understanding [0.8287206589886879]
This paper proposes an efficient Transformer architecture that adjusts the inference computational cost adaptively with a desired inference latency speedup.
The proposed method detects less important hidden sequence elements (word-vectors) and eliminates them in each encoder layer using a proposed Attention Context Contribution (ACC) metric.
The proposed method mathematically and experimentally improves the inference latency of BERT_base and GPT-2 by up to 4.8 and 3.72 times with less than 0.75% accuracy drop and passable perplexity on average.
arXiv Detail & Related papers (2022-01-10T13:04:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.