Towards Scalable SOAP Note Generation: A Weakly Supervised Multimodal Framework
- URL: http://arxiv.org/abs/2506.10328v1
- Date: Thu, 12 Jun 2025 03:33:46 GMT
- Title: Towards Scalable SOAP Note Generation: A Weakly Supervised Multimodal Framework
- Authors: Sadia Kamal, Tim Oates, Joy Wan,
- Abstract summary: Skin carcinoma is the most prevalent form of cancer globally, accounting for over $8 billion in annual healthcare expenditures.<n>In this work, we propose a weakly supervised multimodal framework to generate clinically structured SOAP notes from limited inputs, including lesion images and sparse clinical text.
- Score: 2.628362851671667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skin carcinoma is the most prevalent form of cancer globally, accounting for over $8 billion in annual healthcare expenditures. In clinical settings, physicians document patient visits using detailed SOAP (Subjective, Objective, Assessment, and Plan) notes. However, manually generating these notes is labor-intensive and contributes to clinician burnout. In this work, we propose a weakly supervised multimodal framework to generate clinically structured SOAP notes from limited inputs, including lesion images and sparse clinical text. Our approach reduces reliance on manual annotations, enabling scalable, clinically grounded documentation while alleviating clinician burden and reducing the need for large annotated data. Our method achieves performance comparable to GPT-4o, Claude, and DeepSeek Janus Pro across key clinical relevance metrics. To evaluate clinical quality, we introduce two novel metrics MedConceptEval and Clinical Coherence Score (CCS) which assess semantic alignment with expert medical concepts and input features, respectively.
Related papers
- Skin-SOAP: A Weakly Supervised Framework for Generating Structured SOAP Notes [2.628362851671667]
Skin carcinoma is the most prevalent form of cancer globally, accounting for over $8 billion in annual healthcare expenditures.<n>In clinical settings, physicians document patient visits using detailed SOAP (Subjective, Objective, Assessment, and Plan) notes.<n>We propose skin-SOAP, a weakly supervised multimodal framework to generate clinically structured SOAP notes from limited inputs, including lesion images and sparse clinical text.
arXiv Detail & Related papers (2025-08-07T04:12:43Z) - Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
We present three key contributions to the field of clinical note generation using large language models (LLMs)
First, we introduce CliniKnote, a dataset consisting of 1,200 complex doctor-patient conversations paired with their full clinical notes.
Second, we propose K-SOAP, which enhances traditional SOAPcitepodder20soap (Subjective, Objective, Assessment, and Plan) notes by adding a keyword section at the top, allowing for quick identification of essential information.
Third, we develop an automatic pipeline to generate K-SOAP notes from doctor-patient conversations and benchmark various modern LLMs using various
arXiv Detail & Related papers (2024-08-26T18:39:31Z) - Towards Adapting Open-Source Large Language Models for Expert-Level Clinical Note Generation [19.08691249610632]
This study presents a comprehensive domain- and task-specific adaptation process for the open-source LLaMA-2 13 billion parameter model.<n>Our process incorporates continued pretraining, supervised fine-tuning, and reinforcement learning from both AI and human feedback.<n>Our resulting model, LLaMA-Clinic, can generate clinical notes comparable in quality to those authored by physicians.
arXiv Detail & Related papers (2024-04-25T15:34:53Z) - SoftTiger: A Clinical Foundation Model for Healthcare Workflows [5.181665205189493]
We introduce SoftTiger, a clinical large language model (CLaM) designed as a foundation model for healthcare.
We collect and annotate data for three subtasks, namely, international patient summary, clinical impression and medical encounter.
We supervised fine-tuned a state-of-the-art LLM using public and credentialed clinical data.
arXiv Detail & Related papers (2024-03-01T04:39:16Z) - A Spectrum Evaluation Benchmark for Medical Multi-Modal Large Language Models [57.88111980149541]
We introduce Asclepius, a novel Med-MLLM benchmark that assesses Med-MLLMs in terms of distinct medical specialties and different diagnostic capacities.<n>Grounded in 3 proposed core principles, Asclepius ensures a comprehensive evaluation by encompassing 15 medical specialties.<n>We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 3 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - A Meta-Evaluation of Faithfulness Metrics for Long-Form Hospital-Course
Summarization [2.8575516056239576]
Long-form clinical summarization of hospital admissions has real-world significance because of its potential to help both clinicians and patients.
We benchmark faithfulness metrics against fine-grained human annotations for model-generated summaries of a patient's Brief Hospital Course.
arXiv Detail & Related papers (2023-03-07T14:57:06Z) - A Multimodal Transformer: Fusing Clinical Notes with Structured EHR Data
for Interpretable In-Hospital Mortality Prediction [8.625186194860696]
We provide a novel multimodal transformer to fuse clinical notes and structured EHR data for better prediction of in-hospital mortality.
To improve interpretability, we propose an integrated gradients (IG) method to select important words in clinical notes.
We also investigate the significance of domain adaptive pretraining and task adaptive fine-tuning on the Clinical BERT.
arXiv Detail & Related papers (2022-08-09T03:49:52Z) - Cross-Lingual Knowledge Transfer for Clinical Phenotyping [55.92262310716537]
We investigate cross-lingual knowledge transfer strategies to execute this task for clinics that do not use the English language.
We evaluate these strategies for a Greek and a Spanish clinic leveraging clinical notes from different clinical domains.
Our results show that using multilingual data overall improves clinical phenotyping models and can compensate for data sparseness.
arXiv Detail & Related papers (2022-08-03T08:33:21Z) - Human Evaluation and Correlation with Automatic Metrics in Consultation
Note Generation [56.25869366777579]
In recent years, machine learning models have rapidly become better at generating clinical consultation notes.
We present an extensive human evaluation study where 5 clinicians listen to 57 mock consultations, write their own notes, post-edit a number of automatically generated notes, and extract all the errors.
We find that a simple, character-based Levenshtein distance metric performs on par if not better than common model-based metrics like BertScore.
arXiv Detail & Related papers (2022-04-01T14:04:16Z) - Enriching Unsupervised User Embedding via Medical Concepts [51.17532619610099]
Unsupervised user embedding aims to encode patients into fixed-length vectors without human supervisions.
Medical concepts extracted from the clinical notes contain rich connections between patients and their clinical categories.
We propose a concept-aware unsupervised user embedding that jointly leverages text documents and medical concepts from two clinical corpora.
arXiv Detail & Related papers (2022-03-20T18:54:05Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - Improving Early Sepsis Prediction with Multi Modal Learning [5.129463113166068]
Clinical text provides essential information to estimate the severity of sepsis.
We employ state-of-the-art NLP models such as BERT and a highly specialized NLP model in Amazon Comprehend Medical to represent the text.
Our methods significantly outperforms a clinical criteria suggested by experts, qSOFA, as well as the winning model of the PhysioNet Computing in Cardiology Challenge for predicting Sepsis.
arXiv Detail & Related papers (2021-07-23T09:25:31Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.