TreeLoRA: Efficient Continual Learning via Layer-Wise LoRAs Guided by a Hierarchical Gradient-Similarity Tree
- URL: http://arxiv.org/abs/2506.10355v1
- Date: Thu, 12 Jun 2025 05:25:35 GMT
- Title: TreeLoRA: Efficient Continual Learning via Layer-Wise LoRAs Guided by a Hierarchical Gradient-Similarity Tree
- Authors: Yu-Yang Qian, Yuan-Ze Xu, Zhen-Yu Zhang, Peng Zhao, Zhi-Hua Zhou,
- Abstract summary: In this paper, we introduce TreeLoRA, a novel approach that constructs layer-wise adapters by leveraging hierarchical gradient similarity.<n>To reduce the computational burden of task similarity estimation, we employ bandit techniques to develop an algorithm based on lower confidence bounds.<n> experiments on both vision transformers (ViTs) and large language models (LLMs) demonstrate the effectiveness and efficiency of our approach.
- Score: 52.44403214958304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many real-world applications collect data in a streaming environment, where learning tasks are encountered sequentially. This necessitates continual learning (CL) to update models online, enabling adaptation to new tasks while preserving past knowledge to prevent catastrophic forgetting. Nowadays, with the flourish of large pre-trained models (LPMs), efficiency has become increasingly critical for CL, due to their substantial computational demands and growing parameter sizes. In this paper, we introduce TreeLoRA (K-D Tree of Low-Rank Adapters), a novel approach that constructs layer-wise adapters by leveraging hierarchical gradient similarity to enable efficient CL, particularly for LPMs. To reduce the computational burden of task similarity estimation, we employ bandit techniques to develop an algorithm based on lower confidence bounds to efficiently explore the task structure. Furthermore, we use sparse gradient updates to facilitate parameter optimization, making the approach better suited for LPMs. Theoretical analysis is provided to justify the rationale behind our approach, and experiments on both vision transformers (ViTs) and large language models (LLMs) demonstrate the effectiveness and efficiency of our approach across various domains, including vision and natural language processing tasks.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - LOP: Learning Optimal Pruning for Efficient On-Demand MLLMs Scaling [52.1366057696919]
LOP is an efficient neural pruning framework that learns optimal pruning strategies from the target pruning constraint.<n>LOP approach trains autoregressive neural networks (NNs) to directly predict layer-wise pruning strategies adaptive to the target pruning constraint.<n> Experimental results show that LOP outperforms state-of-the-art pruning methods in various metrics while achieving up to three orders of magnitude speedup.
arXiv Detail & Related papers (2025-06-15T12:14:16Z) - C-LoRA: Continual Low-Rank Adaptation for Pre-trained Models [26.560293264523903]
Low-Rank Adaptation (LoRA) is an efficient fine-tuning method that has been extensively applied in areas such as natural language processing and computer vision.<n>We propose Continual Low-Rank Adaptation (C-LoRA), a novel extension of LoRA for continual learning.<n>C-LoRA uses a learnable routing matrix to dynamically manage parameter updates across tasks.
arXiv Detail & Related papers (2025-02-25T07:35:36Z) - Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning [59.001091197106085]
Multi-Task Learning (MTL) for Vision Transformer aims at enhancing the model capability by tackling multiple tasks simultaneously.<n>Most recent works have predominantly focused on designing Mixture-of-Experts (MoE) structures and in tegrating Low-Rank Adaptation (LoRA) to efficiently perform multi-task learning.<n>We propose a novel approach dubbed Efficient Multi-Task Learning (EMTAL) by transforming a pre-trained Vision Transformer into an efficient multi-task learner.
arXiv Detail & Related papers (2025-01-12T17:41:23Z) - Less is More: Towards Green Code Large Language Models via Unified Structural Pruning [27.428983811427827]
We propose Flab-Pruner, an innovative unified structural pruning method that combines vocabulary, layer, and Feed-Forward Network (FFN) pruning.<n>The results demonstrate that Flab-Pruner retains 97% of the original performance after pruning 22% of the parameters and achieves the same or even better performance after post-training.
arXiv Detail & Related papers (2024-12-20T14:13:09Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers [16.253898272659242]
State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive.
Our study focuses on transformer-based LLMs, specifically targeting the computationally intensive feedforward networks (FFNs)
We show that wide and structured networks can utilize training FLOPs more efficiently, with fewer parameters and lower loss than dense models at their optimal trade-off.
arXiv Detail & Related papers (2024-06-24T08:43:21Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - Flora: Low-Rank Adapters Are Secretly Gradient Compressors [30.224822087562163]
Low-rank adaptation (LoRA) is proposed to reduce the optimization states by training fewer parameters.
LoRA restricts overall weight update matrices to be low-rank, limiting the model performance.
We propose Flora, which is able to achieve high-rank updates by resampling the projection matrices.
arXiv Detail & Related papers (2024-02-05T18:50:39Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
Large Language Models (LLMs) have achieved remarkable performance across a wide variety of natural language tasks.
However, their large size makes their inference slow and computationally expensive.
We show that it enables these layers to acquire 'good' generation ability without affecting the generation ability of the final layer.
arXiv Detail & Related papers (2023-10-28T04:07:58Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
We propose a simple task-specific feature map transformation strategy for continual learning.
Theses provide powerful flexibility for learning new tasks, achieved with minimal parameters added to the base architecture.
We demonstrate the efficacy and efficiency of our method with an extensive set of experiments in discriminative (CIFAR-100 and ImageNet-1K) and generative sequences of tasks.
arXiv Detail & Related papers (2021-03-25T01:48:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.