Reasoning RAG via System 1 or System 2: A Survey on Reasoning Agentic Retrieval-Augmented Generation for Industry Challenges
- URL: http://arxiv.org/abs/2506.10408v1
- Date: Thu, 12 Jun 2025 07:01:56 GMT
- Title: Reasoning RAG via System 1 or System 2: A Survey on Reasoning Agentic Retrieval-Augmented Generation for Industry Challenges
- Authors: Jintao Liang, Gang Su, Huifeng Lin, You Wu, Rui Zhao, Ziyue Li,
- Abstract summary: Retrieval-Augmented Generation (RAG) has emerged as a powerful framework to overcome the knowledge limitations of Large Language Models.<n>To address these challenges, the field has shifted toward Reasoning Agentic RAG, a paradigm that embeds decision-making and adaptive tool use directly into the retrieval process.
- Score: 6.615766570234612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) has emerged as a powerful framework to overcome the knowledge limitations of Large Language Models (LLMs) by integrating external retrieval with language generation. While early RAG systems based on static pipelines have shown effectiveness in well-structured tasks, they struggle in real-world scenarios requiring complex reasoning, dynamic retrieval, and multi-modal integration. To address these challenges, the field has shifted toward Reasoning Agentic RAG, a paradigm that embeds decision-making and adaptive tool use directly into the retrieval process. In this paper, we present a comprehensive review of Reasoning Agentic RAG methods, categorizing them into two primary systems: predefined reasoning, which follows fixed modular pipelines to boost reasoning, and agentic reasoning, where the model autonomously orchestrates tool interaction during inference. We analyze representative techniques under both paradigms, covering architectural design, reasoning strategies, and tool coordination. Finally, we discuss key research challenges and propose future directions to advance the flexibility, robustness, and applicability of reasoning agentic RAG systems. Our collection of the relevant research has been organized into a https://github.com/ByebyeMonica/Reasoning-Agentic-RAG.
Related papers
- Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - HIRAG: Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation [9.175609521889266]
We introduce our new RAG instruction fine-tuning method, Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation (HIRAG)<n>This method enhances the model's open-book examination capability by utilizing multi-level progressive chain-of-thought.<n>Experiments show that the HIRAG training strategy significantly improves the model's performance on datasets such as RGB, PopQA, MuSiQue, HotpotQA, and PubmedQA.
arXiv Detail & Related papers (2025-07-08T06:53:28Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - MA-RAG: Multi-Agent Retrieval-Augmented Generation via Collaborative Chain-of-Thought Reasoning [43.66966457772646]
MA-RAG orchestrates a collaborative set of specialized AI agents to tackle each stage of the RAG pipeline with task-aware reasoning.<n>Our design allows fine-grained control over information flow without any model fine-tuning.<n>This modular and reasoning-driven architecture enables MA-RAG to deliver robust, interpretable results.
arXiv Detail & Related papers (2025-05-26T15:05:18Z) - Synergizing RAG and Reasoning: A Systematic Review [8.842022673771147]
Recent breakthroughs in large language models (LLMs) have propelled Retrieval-Augmented Generation (RAG) to unprecedented levels.<n>This paper presents a systematic review of the collaborative interplay between RAG and reasoning.
arXiv Detail & Related papers (2025-04-22T13:55:13Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
Large Language Models (LLMs) have revolutionized artificial intelligence (AI) by enabling human like text generation and natural language understanding.<n>Retrieval Augmented Generation (RAG) has emerged as a solution, enhancing LLMs by integrating real time data retrieval to provide contextually relevant responses.<n>Agentic Retrieval-Augmented Generation (RAG) transcends these limitations by embedding autonomous AI agents into the RAG pipeline.
arXiv Detail & Related papers (2025-01-15T20:40:25Z) - Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems [92.89673285398521]
o1-like reasoning systems have demonstrated remarkable capabilities in solving complex reasoning tasks.<n>We introduce an imitate, explore, and self-improve'' framework to train the reasoning model.<n>Our approach achieves competitive performance compared to industry-level reasoning systems.
arXiv Detail & Related papers (2024-12-12T16:20:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.