論文の概要: OIBench: Benchmarking Strong Reasoning Models with Olympiad in Informatics
- arxiv url: http://arxiv.org/abs/2506.10481v1
- Date: Thu, 12 Jun 2025 08:33:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:22.649904
- Title: OIBench: Benchmarking Strong Reasoning Models with Olympiad in Informatics
- Title(参考訳): OIBench: インフォマティクスにおけるOlympiadによる強力な推論モデルのベンチマーク
- Authors: Yaoming Zhu, Junxin Wang, Yiyang Li, Lin Qiu, ZongYu Wang, Jun Xu, Xuezhi Cao, Yuhuai Wei, Mingshi Wang, Xunliang Cai, Rong Ma,
- Abstract要約: 本稿では,OIBenchについて紹介する。OIBenchは高品質でプライベートで,250個の厳格なオリジナル問題からなる,オリンピックレベルの情報データセットである。
ベンチマークの構築手法を詳述し、様々なプログラミングパラダイムや複雑さの包括的評価を確実にする。
我々は,よりきめ細かな効率解析のための時間/空間補完曲線を提案し,直接人-モデル比較を可能にする。
- 参考スコア(独自算出の注目度): 13.049841309304922
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As models become increasingly sophisticated, conventional algorithm benchmarks are increasingly saturated, underscoring the need for more challenging benchmarks to guide future improvements in algorithmic reasoning. This paper introduces OIBench, a high-quality, private, and challenging olympiad-level informatics dataset comprising 250 carefully curated original problems. We detail the construction methodology of the benchmark, ensuring a comprehensive assessment across various programming paradigms and complexities, and we demonstrate its contamination-resistant properties via experiments. We propose Time/Space Completion Curves for finer-grained efficiency analysis and enable direct human-model comparisons through high-level participant evaluations. Our experiments reveal that while open-source models lag behind closed-source counterparts, current SOTA models already outperform most human participants in both correctness and efficiency, while still being suboptimal compared to the canonical solutions. By releasing OIBench as a fully open-source resource (https://huggingface.co/datasets/AGI-Eval/OIBench), we hope this benchmark will contribute to advancing code reasoning capabilities for future LLMs.
- Abstract(参考訳): モデルが高度化するにつれて、従来のアルゴリズムベンチマークは飽和し、アルゴリズム推論の今後の改善を導くためのより困難なベンチマークの必要性が強調される。
本稿では,OIBenchについて紹介する。OIBenchは高品質でプライベートで,250個の厳格なオリジナル問題からなる,オリンピックレベルの情報データセットである。
本研究は,ベンチマークの構築手法を詳述し,様々なプログラミングパラダイムや複雑さの包括的評価を保証するとともに,その汚染耐性特性を実験により実証する。
よりきめ細かな効率解析のための時間/空間コンプリート曲線を提案し、高レベルの参加者評価による直接人-モデル比較を可能にする。
我々の実験によると、オープンソースモデルはクローズドソースモデルよりも遅れているものの、現在のSOTAモデルは、正当性と効率の両方において、すでに多くの人間の参加者より優れています。
OIBenchを完全なオープンソースリソース(https://huggingface.co/datasets/AGI-Eval/OIBench)としてリリースすることで、このベンチマークが将来のLLMのコード推論機能の向上に寄与することを期待しています。
関連論文リスト
- RewardBench 2: Advancing Reward Model Evaluation [71.65938693914153]
リワードモデルは、好みのデータからニュアンスされた信号をキャプチャするために、言語モデルの訓練後を通して使用される。
コミュニティは報酬モデルを評価するためのベストプラクティスを確立し始めている。
本稿では,新しいマルチスキル報酬モデルベンチマークであるRewardBench 2を紹介する。
論文 参考訳(メタデータ) (2025-06-02T17:54:04Z) - A Survey of Direct Preference Optimization [103.59317151002693]
LLM(Large Language Models)は、前例のない生成能力を示す。
人的価値との整合性は、有用で無害なデプロイメントを保証する上で、依然として重要です。
直接優先度最適化(DPO)は、最近、合理化された代替案として注目されている。
論文 参考訳(メタデータ) (2025-03-12T08:45:15Z) - Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation [55.21013307734612]
AoPS-Instructは60,000以上の高品質QAペアのデータセットである。
LiveAoPSBenchは、最新のフォーラムデータから派生したタイムスタンプによる進化的評価セットである。
我々の研究は、高度な数学推論のための大規模で高品質なデータセットの作成と維持にスケーラブルなアプローチを提示している。
論文 参考訳(メタデータ) (2025-01-24T06:39:38Z) - Unleashing LLM Reasoning Capability via Scalable Question Synthesis from Scratch [54.12139707822201]
本稿では,新しい,スケーラブルで費用対効果の高いデータ合成手法であるScaleQuestを提案する。
スクラッチから多様な質問を生成することで、100万の問題解決ペアのデータセットを生成します。
私たちの実験では、データに基づいてトレーニングされたモデルが、既存のオープンソースデータセットより優れています。
論文 参考訳(メタデータ) (2024-10-24T12:42:04Z) - Benchmarking Benchmark Leakage in Large Language Models [24.015208839742343]
本稿では,モデル予測精度をベンチマークで評価する2つの単純かつスケーラブルな指標であるPerplexityとN-gramの精度を利用した検出パイプラインを提案する。
テストセットの誤用さえも、トレーニングのかなりの例を明らかにし、潜在的に不公平な比較を行う。
ベンチマーク利用の明確なドキュメンテーションを促進するために,ベンチマーク透明性カードを提案する。
論文 参考訳(メタデータ) (2024-04-29T16:05:36Z) - CURATRON: Complete and Robust Preference Data for Rigorous Alignment of Large Language Models [1.6339731044538859]
本稿では,大規模言語モデルと人間の価値観を協調する上での課題について考察する。
本稿では,LLMのレジリエンスを高めるために,堅牢で悪意のあるAIパイプラインデータセットを提案する。
論文 参考訳(メタデータ) (2024-03-05T07:58:12Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。