OIBench: Benchmarking Strong Reasoning Models with Olympiad in Informatics
- URL: http://arxiv.org/abs/2506.10481v1
- Date: Thu, 12 Jun 2025 08:33:38 GMT
- Title: OIBench: Benchmarking Strong Reasoning Models with Olympiad in Informatics
- Authors: Yaoming Zhu, Junxin Wang, Yiyang Li, Lin Qiu, ZongYu Wang, Jun Xu, Xuezhi Cao, Yuhuai Wei, Mingshi Wang, Xunliang Cai, Rong Ma,
- Abstract summary: This paper introduces OIBench, a high-quality, private, and challenging olympiad-level informatics dataset comprising 250 carefully curated original problems.<n>We detail the construction methodology of the benchmark, ensuring a comprehensive assessment across various programming paradigms and complexities.<n>We propose Time/Space Completion Curves for finer-grained efficiency analysis and enable direct human-model comparisons.
- Score: 13.049841309304922
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As models become increasingly sophisticated, conventional algorithm benchmarks are increasingly saturated, underscoring the need for more challenging benchmarks to guide future improvements in algorithmic reasoning. This paper introduces OIBench, a high-quality, private, and challenging olympiad-level informatics dataset comprising 250 carefully curated original problems. We detail the construction methodology of the benchmark, ensuring a comprehensive assessment across various programming paradigms and complexities, and we demonstrate its contamination-resistant properties via experiments. We propose Time/Space Completion Curves for finer-grained efficiency analysis and enable direct human-model comparisons through high-level participant evaluations. Our experiments reveal that while open-source models lag behind closed-source counterparts, current SOTA models already outperform most human participants in both correctness and efficiency, while still being suboptimal compared to the canonical solutions. By releasing OIBench as a fully open-source resource (https://huggingface.co/datasets/AGI-Eval/OIBench), we hope this benchmark will contribute to advancing code reasoning capabilities for future LLMs.
Related papers
- RoHOI: Robustness Benchmark for Human-Object Interaction Detection [38.09248570129455]
Human-Object Interaction (HOI) detection is crucial for robot-human assistance, enabling context-aware support.<n>We introduce the first benchmark for HOI detection, evaluating model resilience under diverse challenges.<n>Our benchmark, RoHOI, includes 20 corruption types based on HICO-DET and V-COCO datasets and a new robustness-focused metric.
arXiv Detail & Related papers (2025-07-12T01:58:04Z) - RewardBench 2: Advancing Reward Model Evaluation [71.65938693914153]
Reward models are used throughout the post-training of language models to capture nuanced signals from preference data.<n>The community has begun establishing best practices for evaluating reward models.<n>This paper introduces RewardBench 2, a new multi-skill reward modeling benchmark.
arXiv Detail & Related papers (2025-06-02T17:54:04Z) - A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.<n>Their alignment with human values remains critical for ensuring helpful and harmless deployments.<n>Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation [55.21013307734612]
AoPS-Instruct is a dataset of more than 600,000 high-quality QA pairs.<n>LiveAoPSBench is an evolving evaluation set with timestamps, derived from the latest forum data.<n>Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning.
arXiv Detail & Related papers (2025-01-24T06:39:38Z) - Unleashing LLM Reasoning Capability via Scalable Question Synthesis from Scratch [54.12139707822201]
We propose ScaleQuest, a novel, scalable, and cost-effective data synthesis method.<n>By generating diverse questions from scratch, we produce a dataset of 1 million problem-solution pairs.<n>Our experiments demonstrate that models trained on our data outperform existing open-source datasets.
arXiv Detail & Related papers (2024-10-24T12:42:04Z) - Benchmarking Benchmark Leakage in Large Language Models [24.015208839742343]
We introduce a detection pipeline utilizing Perplexity and N-gram accuracy, two simple and scalable metrics that gauge a model's prediction precision on benchmark.
We reveal substantial instances of training even test set misuse, resulting in potentially unfair comparisons.
We propose the "Benchmark Transparency Card" to encourage clear documentation of benchmark utilization.
arXiv Detail & Related papers (2024-04-29T16:05:36Z) - CURATRON: Complete and Robust Preference Data for Rigorous Alignment of Large Language Models [1.6339731044538859]
This paper addresses the challenges of aligning large language models with human values via preference learning.
We propose a novel method for robustly and maliciously manipulated AI pipeline datasets to enhance LLMs' resilience.
arXiv Detail & Related papers (2024-03-05T07:58:12Z) - DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation [83.30006900263744]
Data analysis is a crucial analytical process to generate in-depth studies and conclusive insights.
We propose to automatically generate high-quality answer annotations leveraging the code-generation capabilities of LLMs.
Our DACO-RL algorithm is evaluated by human annotators to produce more helpful answers than SFT model in 57.72% cases.
arXiv Detail & Related papers (2024-03-04T22:47:58Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.