Deep Learning-Based Digitization of Overlapping ECG Images with Open-Source Python Code
- URL: http://arxiv.org/abs/2506.10617v1
- Date: Thu, 12 Jun 2025 12:00:34 GMT
- Title: Deep Learning-Based Digitization of Overlapping ECG Images with Open-Source Python Code
- Authors: Reza Karbasi, Masoud Rahimi, Abdol-Hossein Vahabie, Hadi Moradi,
- Abstract summary: We propose a two-stage pipeline designed to overcome the limitation of handling single leads compromised by signal overlaps.<n>The first stage employs a U-Net based segmentation network, trained on a dataset enriched with overlapping signals.<n>The subsequent stage converts this refined binary mask into a time-series signal using established digitization techniques.
- Score: 2.7498981662768536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the persistent challenge of accurately digitizing paper-based electrocardiogram (ECG) recordings, with a particular focus on robustly handling single leads compromised by signal overlaps-a common yet under-addressed issue in existing methodologies. We propose a two-stage pipeline designed to overcome this limitation. The first stage employs a U-Net based segmentation network, trained on a dataset enriched with overlapping signals and fortified with custom data augmentations, to accurately isolate the primary ECG trace. The subsequent stage converts this refined binary mask into a time-series signal using established digitization techniques, enhanced by an adaptive grid detection module for improved versatility across different ECG formats and scales. Our experimental results demonstrate the efficacy of our approach. The U-Net architecture achieves an IoU of 0.87 for the fine-grained segmentation task. Crucially, our proposed digitization method yields superior performance compared to a well-established baseline technique across both non-overlapping and challenging overlapping ECG samples. For non-overlapping signals, our method achieved a Mean Squared Error (MSE) of 0.0010 and a Pearson Correlation Coefficient (rho) of 0.9644, compared to 0.0015 and 0.9366, respectively, for the baseline. On samples with signal overlap, our method achieved an MSE of 0.0029 and a rho of 0.9641, significantly improving upon the baseline's 0.0178 and 0.8676. This work demonstrates an effective strategy to significantly enhance digitization accuracy, especially in the presence of signal overlaps, thereby laying a strong foundation for the reliable conversion of analog ECG records into analyzable digital data for contemporary research and clinical applications. The implementation is publicly available at this GitHub repository: https://github.com/masoudrahimi39/ECG-code.
Related papers
- EffiSegNet: Gastrointestinal Polyp Segmentation through a Pre-Trained EfficientNet-based Network with a Simplified Decoder [0.8892527836401773]
This work introduces EffiSegNet, a novel segmentation framework leveraging transfer learning with a pre-trained Convolutional Neural Network (CNN) as its backbone.
We evaluate our model on the gastrointestinal polyp segmentation task using the publicly available Kvasir-SEG dataset, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-07-23T08:54:55Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - DeScoD-ECG: Deep Score-Based Diffusion Model for ECG Baseline Wander and
Noise Removal [4.998493052085877]
Electrocardiogram (ECG) signals commonly suffer noise interference, such as baseline wander.
This paper proposes a novel ECG baseline wander and noise removal technology.
arXiv Detail & Related papers (2022-07-31T23:39:33Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Ensemble of Convolution Neural Networks on Heterogeneous Signals for
Sleep Stage Scoring [63.30661835412352]
This paper explores and compares the convenience of using additional signals apart from electroencephalograms.
The best overall model, an ensemble of Depth-wise Separational Convolutional Neural Networks, has achieved an accuracy of 86.06%.
arXiv Detail & Related papers (2021-07-23T06:37:38Z) - Robust R-Peak Detection in Low-Quality Holter ECGs using 1D
Convolutional Neural Network [20.198563425074372]
This paper presents a generic and robust system for R-peak detection in Holter ECG signals.
A novel implementation of the 1D Convolutional Neural Network (CNN) is used integrated with a verification model to reduce the number of false alarms.
Experimental results demonstrate that the proposed systematic approach achieves 99.30% F1-score, 99.69% recall, and 98.91% precision in CPSC-DB.
arXiv Detail & Related papers (2020-12-29T21:10:54Z) - SE-ECGNet: A Multi-scale Deep Residual Network with
Squeeze-and-Excitation Module for ECG Signal Classification [6.124438924401066]
We develop a multi-scale deep residual network for the ECG signal classification task.
We are the first to propose to treat the multi-lead signal as a 2-dimensional matrix.
Our proposed model achieves 99.2% F1-score in the MIT-BIH dataset and 89.4% F1-score in Alibaba dataset.
arXiv Detail & Related papers (2020-12-10T08:37:44Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.