SE-ECGNet: A Multi-scale Deep Residual Network with
Squeeze-and-Excitation Module for ECG Signal Classification
- URL: http://arxiv.org/abs/2012.05510v1
- Date: Thu, 10 Dec 2020 08:37:44 GMT
- Title: SE-ECGNet: A Multi-scale Deep Residual Network with
Squeeze-and-Excitation Module for ECG Signal Classification
- Authors: Haozhen Zhang, Wei Zhao, Shuang Liu
- Abstract summary: We develop a multi-scale deep residual network for the ECG signal classification task.
We are the first to propose to treat the multi-lead signal as a 2-dimensional matrix.
Our proposed model achieves 99.2% F1-score in the MIT-BIH dataset and 89.4% F1-score in Alibaba dataset.
- Score: 6.124438924401066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The classification of electrocardiogram (ECG) signals, which takes much time
and suffers from a high rate of misjudgment, is recognized as an extremely
challenging task for cardiologists. The major difficulty of the ECG signals
classification is caused by the long-term sequence dependencies. Most existing
approaches for ECG signal classification use Recurrent Neural Network models,
e.g., LSTM and GRU, which are unable to extract accurate features for such long
sequences. Other approaches utilize 1-Dimensional Convolutional Neural Network
(CNN), such as ResNet or its variant, and they can not make good use of the
multi-lead information from ECG signals.Based on the above observations, we
develop a multi-scale deep residual network for the ECG signal classification
task. We are the first to propose to treat the multi-lead signal as a
2-dimensional matrix and combines multi-scale 2-D convolution blocks with 1-D
convolution blocks for feature extraction. Our proposed model achieves 99.2%
F1-score in the MIT-BIH dataset and 89.4% F1-score in Alibaba dataset and
outperforms the state-of-the-art performance by 2% and 3%, respectively, view
related code and data at https://github.com/Amadeuszhao/SE-ECGNet
Related papers
- Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - TSRNet: Simple Framework for Real-time ECG Anomaly Detection with
Multimodal Time and Spectrogram Restoration Network [9.770923451320938]
We propose an approach that leverages anomaly detection to identify unhealthy conditions using solely normal ECG data for training.
We introduce a specialized network called the Multimodal Time and Spectrogram Restoration Network (TSRNet) designed specifically for detecting anomalies in ECG signals.
arXiv Detail & Related papers (2023-12-15T20:27:38Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
The input ECG signals are firstly segmented and normalized, and then fed into the combined VGG and LSTM network for feature extraction and classification.
An attention mechanism (SE block) is embedded into the core network for increasing the weight of important features.
arXiv Detail & Related papers (2022-10-31T07:36:48Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG Heartbeat Classification Using Multimodal Fusion [13.524306011331303]
We propose two computationally efficient multimodal fusion frameworks for ECG heart beat classification.
In MFF, we extracted features from penultimate layer of CNNs and fused them to get unique and interdependent information.
We achieved classification accuracy of 99.7% and 99.2% on arrhythmia and MI classification, respectively.
arXiv Detail & Related papers (2021-07-21T03:48:35Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Atrial Fibrillation Detection and ECG Classification based on CNN-BiLSTM [3.1372269816123994]
It is challenging to visually detect heart disease from the electrocardiographic (ECG) signals.
Implementing an automated ECG signal detection system can help diagnosis arrhythmia in order to improve the accuracy of diagnosis.
arXiv Detail & Related papers (2020-11-12T04:20:56Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Multi-Lead ECG Classification via an Information-Based Attention
Convolutional Neural Network [1.1720399305661802]
One-dimensional convolutional neural networks (CNN) have proven to be effective in pervasive classification tasks.
We implement the Residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map.
An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task.
arXiv Detail & Related papers (2020-03-25T02:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.