論文の概要: Saturation Self-Organizing Map
- arxiv url: http://arxiv.org/abs/2506.10680v1
- Date: Thu, 12 Jun 2025 13:18:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:22.749789
- Title: Saturation Self-Organizing Map
- Title(参考訳): 飽和自己組織化マップ
- Authors: Igor Urbanik, Paweł Gajewski,
- Abstract要約: SatSOM(Saturation Self-Organizing Maps)を導入し,継続的な学習シナリオにおける知識保持を改善する。
SatSOMには新しい飽和機構が組み込まれており、情報の蓄積に伴って学習速度とニューロン近傍半径が徐々に減少する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning poses a fundamental challenge for neural systems, which often suffer from catastrophic forgetting when exposed to sequential tasks. Self-Organizing Maps (SOMs), despite their interpretability and efficiency, are not immune to this issue. In this paper, we introduce Saturation Self-Organizing Maps (SatSOM)-an extension of SOMs designed to improve knowledge retention in continual learning scenarios. SatSOM incorporates a novel saturation mechanism that gradually reduces the learning rate and neighborhood radius of neurons as they accumulate information. This effectively freezes well-trained neurons and redirects learning to underutilized areas of the map.
- Abstract(参考訳): 連続学習は、シーケンシャルなタスクに晒されると破滅的な忘れがちなニューラルネットワークにとって、根本的な課題となる。
自己組織マップ(SOM)は、解釈性と効率性にもかかわらず、この問題には無関心である。
本稿では,Saturation Self-Organizing Maps (SatSOM)について紹介する。
SatSOMには新しい飽和機構が組み込まれており、情報の蓄積に伴って学習速度とニューロン近傍半径が徐々に減少する。
これにより、よく訓練されたニューロンを効果的に凍結し、学習を地図の未利用領域にリダイレクトする。
関連論文リスト
- Semi-parametric Memory Consolidation: Towards Brain-like Deep Continual Learning [59.35015431695172]
本稿では,半パラメトリックメモリと覚醒・睡眠統合機構を統合したバイオミメティック連続学習フレームワークを提案する。
提案手法は,実世界の挑戦的連続学習シナリオにおいて,先行知識を維持しつつ,新しいタスクにおけるディープニューラルネットワークの高性能維持を可能にする。
論文 参考訳(メタデータ) (2025-04-20T19:53:13Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - Neuro-mimetic Task-free Unsupervised Online Learning with Continual
Self-Organizing Maps [56.827895559823126]
自己組織化マップ(英: Self-organizing map、SOM)は、クラスタリングや次元減少によく用いられるニューラルネットワークモデルである。
低メモリ予算下でのオンライン教師なし学習が可能なSOM(連続SOM)の一般化を提案する。
MNIST, Kuzushiji-MNIST, Fashion-MNISTなどのベンチマークでは, ほぼ2倍の精度が得られた。
論文 参考訳(メタデータ) (2024-02-19T19:11:22Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
継続学習(CL)手法は、機械学習モデルが、以前にマスターされたタスクを壊滅的に忘れることなく、新しいタスクを学習できるようにすることを目的としている。
既存のCLアプローチは、しばしば、事前に確認されたサンプルのバッファを保持し、知識蒸留を行い、あるいはこの目標に向けて正規化技術を使用する。
我々は,現在および過去のタスクを任意の段階で学習するために,スパースニューロンのみを活性化し,選択することを提案する。
論文 参考訳(メタデータ) (2022-02-21T13:25:03Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Dendritic Self-Organizing Maps for Continual Learning [0.0]
我々は、DendSOM(Dendritic-Self-Organizing Map)と呼ばれる生物学的ニューロンにインスパイアされた新しいアルゴリズムを提案する。
DendSOMは、入力空間の特定の領域からパターンを抽出する単一のSOMからなる。
ベンチマークデータセットでは、古典的なSOMやいくつかの最先端の継続的学習アルゴリズムよりも優れています。
論文 参考訳(メタデータ) (2021-10-18T14:47:19Z) - Continual learning under domain transfer with sparse synaptic bursting [2.314558204145174]
我々は、未確認のデータセットを逐次学習するシステムを、時間とともにほとんど忘れずに導入する。
本手法は,タスク間で再資源化される重みのスパースバーストを伴って,ドメイン転送下で連続的に学習する。
論文 参考訳(メタデータ) (2021-08-26T22:53:27Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
人工ニューラルネットワーク(ANV)は、ニューラルネットワークが自然のニューラルネットワークからいくつかの利点を学ぶのに役立つ。
ANVは、トレーニングデータと学習モデルの間の相互情報の暗黙の正則化として機能する。
過度にフィットし、ノイズの記憶をラベル付けし、無視できるコストで破滅的な忘れを効果的に軽減することができる。
論文 参考訳(メタデータ) (2020-11-12T06:06:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。