Enhancing Deepfake Detection using SE Block Attention with CNN
- URL: http://arxiv.org/abs/2506.10683v1
- Date: Thu, 12 Jun 2025 13:29:26 GMT
- Title: Enhancing Deepfake Detection using SE Block Attention with CNN
- Authors: Subhram Dasgupta, Janelle Mason, Xiaohong Yuan, Olusola Odeyomi, Kaushik Roy,
- Abstract summary: We propose a lightweight convolution neural network (CNN) with squeeze and excitation block attention (SE) for Deepfake detection.<n>The model achieved an overall classification accuracy of 94.14% and AUC-ROC score of 0.985 on the Style GAN dataset.<n>Our proposed approach presents a promising avenue for combating the Deepfake challenge with minimal computational resources.
- Score: 5.7494612007431805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the digital age, Deepfake present a formidable challenge by using advanced artificial intelligence to create highly convincing manipulated content, undermining information authenticity and security. These sophisticated fabrications surpass traditional detection methods in complexity and realism. To address this issue, we aim to harness cutting-edge deep learning methodologies to engineer an innovative deepfake detection model. However, most of the models designed for deepfake detection are large, causing heavy storage and memory consumption. In this research, we propose a lightweight convolution neural network (CNN) with squeeze and excitation block attention (SE) for Deepfake detection. The SE block module is designed to perform dynamic channel-wise feature recalibration. The SE block allows the network to emphasize informative features and suppress less useful ones, which leads to a more efficient and effective learning module. This module is integrated with a simple sequential model to perform Deepfake detection. The model is smaller in size and it achieves competing accuracy with the existing models for deepfake detection tasks. The model achieved an overall classification accuracy of 94.14% and AUC-ROC score of 0.985 on the Style GAN dataset from the Diverse Fake Face Dataset. Our proposed approach presents a promising avenue for combating the Deepfake challenge with minimal computational resources, developing efficient and scalable solutions for digital content verification.
Related papers
- FAME: A Lightweight Spatio-Temporal Network for Model Attribution of Face-Swap Deepfakes [9.462613446025001]
Face-fake Deepfake videos pose growing risks to digital security, privacy, and media integrity.<n>FAME is a framework designed to capture subtle artifacts specific to different face-generative models.<n>Results show that FAME consistently outperforms existing methods in both accuracy and runtime.
arXiv Detail & Related papers (2025-06-13T05:47:09Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Towards More General Video-based Deepfake Detection through Facial Component Guided Adaptation for Foundation Model [16.69101880602321]
We propose a novel side-network-based decoder for generalized video-based Deepfake detection.<n>We also introduce Facial Component Guidance (FCG) to enhance spatial learning generalizability.<n>Our approach demonstrates promising generalizability on challenging Deepfake datasets.
arXiv Detail & Related papers (2024-04-08T14:58:52Z) - Unmasking Deepfake Faces from Videos Using An Explainable Cost-Sensitive
Deep Learning Approach [0.0]
Deepfake technology is widely used, which has led to serious worries about the authenticity of digital media.
This study employs a resource-effective and transparent cost-sensitive deep learning method to effectively detect deepfake faces in videos.
arXiv Detail & Related papers (2023-12-17T14:57:10Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-distribution (OOD) detection aims to identify OOD data based on representations extracted from well-trained deep models.
We propose a general methodology named watermarking in this paper.
We learn a unified pattern that is superimposed onto features of original data, and the model's detection capability is largely boosted after watermarking.
arXiv Detail & Related papers (2022-10-27T06:12:32Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - DeepSteal: Advanced Model Extractions Leveraging Efficient Weight
Stealing in Memories [26.067920958354]
One of the major threats to the privacy of Deep Neural Networks (DNNs) is model extraction attacks.
Recent studies show hardware-based side channel attacks can reveal internal knowledge about DNN models (e.g., model architectures)
We propose an advanced model extraction attack framework DeepSteal that effectively steals DNN weights with the aid of memory side-channel attack.
arXiv Detail & Related papers (2021-11-08T16:55:45Z) - TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly
Supervised Learning [17.40885531847159]
Deepfakes have become a critical social problem, and detecting them is of utmost importance.
In this work, we introduce a practical digital forensic tool to detect different types of deepfakes simultaneously.
We develop an autoencoder-based detection model with Residual blocks and sequentially perform transfer learning to detect different types of deepfakes simultaneously.
arXiv Detail & Related papers (2021-05-13T07:31:08Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Improving the Efficiency and Robustness of Deepfakes Detection through
Precise Geometric Features [13.033517345182728]
Deepfakes is a branch of malicious techniques that transplant a target face to the original one in videos.
Previous efforts for Deepfakes videos detection mainly focused on appearance features, which have a risk of being bypassed by sophisticated manipulation.
We propose an efficient and robust framework named LRNet for detecting Deepfakes videos through temporal modeling on precise geometric features.
arXiv Detail & Related papers (2021-04-09T16:57:55Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.